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a b s t r a c t

Many mathematical and computational models used in engineering produce multivariate output that
shows some degree of correlation. However, conventional approaches to Global Sensitivity Analysis
(GSA) assume that the output variable is scalar. These approaches are applied on each output variable
leading to a large number of sensitivity indices that shows a high degree of redundancy making the
interpretation of the results difficult. Two approaches have been proposed for GSA in the case of
multivariate output: output decomposition approach [9] and covariance decomposition approach [14]
but they are computationally intensive for most practical problems. In this paper, Polynomial Chaos
Expansion (PCE) is used for an efficient GSAwith multivariate output. The results indicate that PCE allows
efficient estimation of the covariance matrix and GSA on the coefficients in the approach defined by
Campbell et al. [9], and the development of analytical expressions for the multivariate sensitivity indices
defined by Gamboa et al. [14].

& 2014 Published by Elsevier Ltd.

1. Introduction

Important models of interest in engineering produce vector or
multivariate output, such as partial differential equations (PDE) that
describe spatial and temporal changes of variables of interest. Con-
ventional methodologies for Global Sensitivity Analysis (GSA), includ-
ing Sobol decomposition [24] and moment-independent approach [8],
were designed for scalar output. However, these methodologies are
applied to each one of the variables comprising the multivariate
output resulting in a large number of sensitivity measures. If the
correlation in the output is strong, there is a high degree of
redundancy in the estimated indices, situation in which it is difficult
to interpret the results of the sensitivity analysis. Saltelli and Tarantola
[23] warned about this problem “A possible cause of difficulty for SA is
when the model consists of a large set (k) of input factors and,
simultaneously, has many output variables (e.g., m). In such a case, a
complete analysis would require the estimation of the sensitivity of each
output to every input, thus returning m� k indices. We believe that the
analysis can be made more effective by focusing not on the model output
per se but on the problem that such output is supposed to solve. To this
end, model use should be declared before uncertainty and sensitivity
analyses are performed”. In other words, the suggestion proposed by
Saltelli and Tarantola [23] is to simplify the original problem defining a
scalar variable of interest to apply the GSA. Although this approach can

be applied in many cases, there are some situations where this
reduction is not possible due to the specific nature of the problem.

In the case of PDE, the use of the sensitivity measures designed
for scalar output ignores the important characteristics of spatial
and/or temporal correlation that is generated from the physical
processes encoded by mathematical model. There is a growing
need for GSA methodologies specifically designed for multivariate
output due to the increasing role of complex quantitative models
used by engineers/scientists to support decision making. There are
two approaches for the application of GSA in the case of multi-
variate output. In the first approach, Campbell et al. [9] proposed a
methodology for GSA when the model output can be represented
as functions that can be extended to multivariate output. In this
approach the model output is decomposed in an orthogonal basis
and then GSA is applied to the coefficients of this expansion.

Lamboni et al. [18] applied this approach to mathematical
models of crop growth, where the output displayed temporal
variations. The orthonormal basis used in this case was the
eigenvectors of the covariance matrix, and the sensitivities of the
coefficients were estimated using conventional ANOVA decom-
position. Following this work, Lamboni et al. [19] proposed a new
set of sensitivity indices for multivariate output that can be
applied in the approach defined by Campbell et al. [9]. In the
second approach, Gamboa et al. [14] defined a new set of
sensitivity measures based on decomposition of the covariance
of the model output that are equivalent to the Sobol indices in the
scalar case. This approach does not require the spectral decom-
position of the covariance matrix as in the output decomposition
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approach [18,19] and therefore it is expected to be more efficient
in computational terms.

In the previous approaches, estimation of sensitivity measures is
based on Monte Carlo simulation [24,21,22], an approach that is
simple to apply but in some cases requires a large number of model
evaluations. Metamodels are good alternatives for estimation of
sensitivity indices because they are simpler to evaluate than the
original model and can be more accurate than the conventional Monte
Carlo simulation in the case of small to moderate sample sizes [26].
There are different types of metamodels such as multiple linear and
nonlinear regression, cubic splines, Artificial Neural Networks, Gaus-
sian Processes and orthogonal polynomials. A specific type of ortho-
gonal polynomial metamodel is the so-called Polynomial Chaos
Expansion (PCE), that is, a series expansion of a random variable using
orthogonal basis that depends on the predetermined Probability
Density Functions (PDF) [17]. A typical example is the use of Hermite
polynomials to represent normal random variables.

The importance of PCE for GSA of scalar output is that analytical
expressions for Sobol indices can be obtained from the coefficients
of PCE, a result established by Sudret [27]. However, the use of PCE
in the case of GSA for multivariate output has not been studied to
date. Therefore in this paper, PCE is applied to two approaches of
GSA for multivariate output:

1. In the decomposition of output approach, PCE is used to
estimate efficiently the covariance matrices used to define the
orthogonal decomposition of the output, and to obtain the Sobol
decomposition of the coefficients in the resulting expansion.

2. In the covariance decomposition approach, PCE allows the devel-
opment of analytical expressions for the multivariate sensitivity
indices proposed by Gamboa et al. [14] in a similar way to the
approach proposed by Sudret [27] for the scalar case.

In addition, these two approaches are applied to a simple problem of
reactive transport in porous media, allowing for a comparison with
the goal of identifying advantages and disadvantages of these
methodologies. This paper is organized as follows: Section 2 includes
a description of the main concepts used in this paper (scalar and
multivariate GSA in Section 2.1, a review of the PCE in Section 2.3, the
application of PCE to scalar and multivariate GSA in Section 2.4), the
proposed approach is tested on a simple problem of multicomponent
transport in porous media in Section 3, and finally results and
discussion are included in Section 4.

2. Methodology

2.1. Global Sensitivity Analysis for scalar and multivariate output

The Global Sensitivity Analysis (GSA) is defined as the deter-
mination of how “uncertainty in the output of a model (numerical or
otherwise) can be apportioned to different sources of uncertainty in
the model input” [23,22], and one of the main methodologies for
GSA is called Sobol decomposition [24,2].

Let Xi; i¼ 1;…;n be a set of independent input random vari-
ables (RV) defined on some probability space ðΩ; F;PÞ (with Ω as
the sample space, F is the s-algebra of events, and P is the
probability measure); the model output Y ¼ ðY1;…;YmÞ defined
as Yr ¼ gðX1;…;Xn; rÞ; r¼ 1;…;m where gðX1;…;Xn; rÞ is a deter-
ministic function; and with a positive semidefinite (PSD) covar-
iance matrix CðY1;…;YmÞ. In the case of scalar output r¼1, the
Sobol decomposition of the function Y1 ¼ gðX1;…;XnÞ is given by

Y1 ¼ g0þ ∑
n

i ¼ 1
giðXiÞþ ∑

1r io jrn
gi;jðXi;XjÞþ⋯þgi;j;…;nðX1;X2;…;XnÞ

ð1Þ

where giðXiÞ represents the variation of Y1 due to change of
variable Xi only when the mean g0 has been considered, and in
the same way, gi;j represents the variation of Y1 that is not
accounted by the changes in variables i and j taken separately.
This gives information on how the variables i and j are interacting.
The terms in the expansion gi;j;… are orthogonal components. Due
to the independence of the input variables Xi; i¼ 1;…;n, the
variance of output variable Y1 is given by

V ½Y1� ¼ ∑
n

i ¼ 1
Viþ ∑

1r io jrn
Vi;jþ⋯þV1;2;…;n ð2Þ

The variation of the output Y1 associated with variations in input
variable Xi with no reference to other variables is given by the ratio
of Vi=V ½Y1�, and this leads to the definition of the Single Effect
Index [24] as

S1i ¼
Vi

V ½Y1�
ð3Þ

The variation of output Y1 associated with changes in input
variable Xi interacting with other variables requires consideration
of the variances associated with terms (single, pairs, triplets, etc)
where Xi appears, and this defines the Total Effect Index [16]:

STi ¼
Viþ∑1r io jrnVijþ⋯þV1;2;…;n

V ½Y1�
¼ 1�V ½Y1jX � i�

V ½Y1�
ð4Þ

where � i indicates fixing all input variables except variable i. In
the case of multivariate output, the Sobol decomposition is
obtained for each component Yr ; r¼ 1;…;m of the model output,
leading to a large number of sensitivity measures for each output
variable. In general these sensitivity measures are redundant if the
correlation in the model output is important [18,19] leading to
difficulties for the interpretation of these results. To deal with this
problem, two different alternatives have been proposed for GSA in
the case of multivariate output. These are called output decom-
position [9] and covariance decomposition approaches [14].

2.1.1. Output decomposition approach
Campbell et al. [9] proposed an approach for GSA of functional

output that is based on two steps:

1. Decomposition of the model output Yr in terms of orthonormal
basis φð�Þ:

Yr ¼ Y rþ ∑
K

k ¼ 1
hr;kφk; r¼ 1;…;m ð5Þ

where Yr is the mean of Yr, hr;k are the coefficients and K is the
number of basis used (in general K5m). The orthonormal basis
can be obtained using methods such as Principal Component
Analysis (PCA), and orthogonal polynomials.

2. Application of any approach of GSA on the coefficients hr;k to
identify and rank the input variables associated with each
orthonormal basis in the previous expansion (using the single
effect index, see Eq. (3)) and the presence of interactions
between these input variables in each basis (using the total
effect index, see Eq. (4)). The combination of projection on a
orthonormal basis and GSA is an useful tool to separate and
identify the effect of specific physical process in the model
response Yr ; r¼ 1;…;m being analyzed.

Lamboni et al. [19] defined the generalized sensitivity indices from
the ANOVA decomposition of the coefficients in the expansion
given in Eq. (5), where the orthogonal basis φ are the eigenvectors
of the covariance matrix CðY1;…;YmÞ. The variation of the coeffi-
cients hi;k of the k-th eigenvector associated with variations in the
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