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a b s t r a c t

A Response Surface (RS) strategy is presented for the evaluation of the response statistics of dynamic
systems subjected to stochastic excitation. The proposed approach adopts a strategy based on the High
Dimensional Model Representation (HDMR), which gives a Gaussian Model (GM) of the response. The
GM requires only a reduced number of analyses which can be adopted for all the degrees of freedom of a
MDOF dynamic system and it can be successfully adopted for weakly nonlinear dynamic systems.

For more strongly nonlinear systems a Non-Gaussian approximation may be necessary for the highest
response thresholds. In this paper this issue is accomplished through the FORM solution, and the design
point is obtained by using a response surface method recently proposed by the author and Der
Kiureghian to this aim. The latter response surface is based on a variant of the Model Correction Factor
Method (MCFM), which is here applied by using as a starting model the GM itself.

In many applications of engineering interest, both the input and the response processes are
stationary, so that the stochastic excitation through the Fourier series can be modeled in terms of the
underlying Power Spectral Density (PSD). In these cases, it is seen that the dynamic computations
required by the proposed approach can decrease significantly. The application to SDOF and MDOF
hysteretic systems shows the effectiveness of the presented method.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of the stochastic dynamic analysis is the evaluation of
the response of dynamic systems subjected to stochastic input.
If the stochastic excitation follows a Gaussian distribution and the
dynamic system is linear, then the response follows a Gaussian
distribution, too, and it is relatively easy to be determined.
Conversely, the response of a nonlinear dynamic system follows
a Non-Gaussian distribution, and its determination is a very
complicated task to be accomplished.

In the last decades a lot of research has been devoted to this
topic, however most approaches are not easily applicable to
general non-linear MDOF systems, and so they are difficult to
apply in practice.

These drawbacks are not shared by the Equivalent Linearization
Method (ELM) [1], which has gained wide popularity because of its
versatility and applicability, see among others, [2,3]. The basic idea
is to replace the original non-linear system by an equivalent linear
one, whose determination is performed by minimizing the differ-
ence between the two systems in some statistical sense. The ELM
exhibits different forms based on the adopted probability density
function for the evaluation of the coefficients that appear in the

linearized system. Usually the Gaussian distribution is adopted,
which allows to approximate the second order moments of the
response. Against relatively little numerical efforts, unfortunately
it gives accurate results for weakly non-linear systems only [1,4].
Moreover, the ELM generally cannot approximate adequately the
distribution probability of the response, especially in the tail
region. Therefore some response statistics as crossing rates and
first passage probability will be inaccurate at high thresholds for
systems strongly nonlinear.

The most robust procedure is given by the Monte Carlo
Simulation (MCS), which is however strongly demanding in its
crude form. For this reason, recently some smart simulation
techniques have been proposed, among the other we recall the
subset simulation [5], line sampling [6], asymptotic sampling [7].

Promising results are given from the application to the non-
linear stochastic dynamic analysis of the analytical methods of
structural reliability, particularly the first-order reliability method
(FORM) [8,9]. At first, the stochastic input is discretized into a large
number of standard normal random variables. The tail probability
is defined as the probability that the response of the dynamic
system is greater than a chosen threshold x at fixed time instant t.
In this way, for given x and t the dynamic problem may be solved
by using FORM. The knowledge of the design point is of great
importance, because: (i) it corresponds to the most likely realiza-
tion of the stochastic input that gives rise to the tail exceedance
event, and therefore it defines a critical excitation for the system,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ress

Reliability Engineering and System Safety

0951-8320/$ - see front matter & 2014 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ress.2014.01.003

n Tel.: þ65 6516 6498; mob.: þ65 8670 5478.
E-mail addresses: umberto.alibrandi@nus.edu.sg, umbertoalibrandi@gmail.com

Reliability Engineering and System Safety 126 (2014) 44–53

www.sciencedirect.com/science/journal/09518320
www.elsevier.com/locate/ress
http://dx.doi.org/10.1016/j.ress.2014.01.003
http://dx.doi.org/10.1016/j.ress.2014.01.003
http://dx.doi.org/10.1016/j.ress.2014.01.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2014.01.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2014.01.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2014.01.003&domain=pdf
mailto:umberto.alibrandi@nus.edu.sg
mailto:umbertoalibrandi@gmail.com
http://dx.doi.org/10.1016/j.ress.2014.01.003


(ii) it gives the FORM solution, which has been shown to give very
good approximations of the tail probability in many cases of
practical interest [10–12], (iii) it allows the application of the
recently developed tail equivalent linearization method (TELM)
[13–17].

However, in high-dimensional spaces, as the one here ana-
lyzed, the evaluation of the design point is a challenging task.
Indeed, the design point is obtained as a solution of a constrained
optimization problem [18,19]. For some material models, the
problem is not numerically very smooth, and the finite element
code fails to produce a result due to lack of numerical conver-
gence, so that some suitable remedying strategies have to be
adopted [20]. Moreover, for the solution of the optimization
problem gradient-based procedures are usually adopted, which
require repeated evaluation of the response gradient. Typically,
the finite elements codes do not provide these gradients, which
can be approximated by the finite differences method (FDM). By
using FDM, each gradient at each iteration of the iterative
procedure requires nþ1 nonlinear dynamic computations, n
being the number of random variables, and consequently the
cost of computation may be excessive. Moreover the selection of
the perturbation parameter in FDM is questionable, and in
particular in high-dimensional spaces the accuracy of the
response gradient may be lost. Consistency, accuracy and effi-
ciency of the gradients can be achieved by using the direct
differentiation method (DDM) [21–23], which involves analytical
differentiation of the discretized response equations. However,
the DDM requires alterations at the finite element (FE) code level,
and it is necessary to use a DDM-enabled software, such as
OpenSees [24].

To reduce the computational cost and using an existing FE code
as a “black-box”, an alternative strategy is given from the Response
Surface Methodology (RSM), which builds a surrogate model of
the target Limit State Function (LSF), defined in a simple and
explicit mathematical form [25–28]. Once the Response Surface
(RS) is built, it is possible to substitute the RS for the target LSF,
and then it is no longer necessary to run demanding finite element
analyses.

In this paper we used a novel response surface strategy based
on the High Dimensional Model Representation (HDMR) [29].
The HDMR is a set of analysis tools for capturing the high-dimen-
sional relationships between sets of input and output model vari-
ables. The existing HDMR-based response surfaces [30] require
for the first-order representation of the limit state function on
average 5–7 points for each random variable, so for the problem
at hand a huge computational effort arises, since we have a
different limit state function for each response threshold. In this
paper we present a suitable chosen response surface requiring
only 2 points for each random variable, reducing significantly the
dynamic computations.

The proposed application of the HDMR gives a Gaussian Model
(GM) for the system response and it gives quite good approxima-
tions for weakly nonlinear dynamic systems. For systems with
strong nonlinearities it is likely that especially for the highest
thresholds the FORM solution outperforms the GM. In any case,
the design point of the GM is likely to be close to the design point
of the original problem, so it can represent a good starting point
for FORM. It is expected that in general the algorithm converges
with only a few iterations. In this paper, to reduce further the
computational cost, we adopted the “improved Model Correction
Factor Method” (iMCFM), developed by the author with A. Der
Kiureghian in recent papers [11,12].

The paper is organized as follows: in Sections 2 and 3 we
present the nonlinear stochastic dynamic problem by using the
proposed response surface strategy giving rise to the GM, in
Section 4 its improvement through the MCFM is discussed, and

finally in Section 5 the method is applied to hysteretic systems,
showing its accuracy and efficiency.

2. Discretization of the stochastic input

The proposed approach requires the preliminary discretization
of the stochastic input into a set of standard normal random
variables. Several formulations for this purpose are available, see
Der Kiureghian [9] for a brief review. For a zero-mean, Gaussian
excitation process, all representations have the form

Fðt;uÞ ¼ ∑
nðτÞ

i ¼ 1
sðτÞi ðtÞui ¼ sðτÞðtÞ � u ð1Þ

where n¼ nðτÞ is a measure of the resolution of the discretization,
u¼ fu1;u2;…;ungT is an n-vector of standard normal random

variables, sðτÞðtÞ ¼ f sðτÞ1 ðtÞ sðτÞ2 ðtÞ … sðτÞn ðtÞ gT is an n-vector of

deterministic shape functions dependent on the covariance func-
tion of the process. In (1) the superscript “τ” refers to the
discretization of the input in the time domain [8–14,16,17]. In

the special case of sðτÞi ðtÞ ¼s�Δt � δðt�tiÞ, where δðtÞ is the Dirac
delta function and ti ¼ iΔt, i¼ 1;2;…;n, are a set of equally spaced
time points, then, Fðt;uÞ represents a discretized band-limited
white noise excitation of intensity SW , of variance s2

F ¼ ð2πSW Þ=Δt
and with cut-off frequency ωc ¼ π=Δt.

If the excitation is a stationary process defined by the power
spectral density (PSD) function SF ðωÞ, through the discrete Fourier
series the stochastic input can be expressed as [15–17]

Fðt;uÞ ¼ ∑
nðωÞ

k ¼ 1
Fkðt;uÞ ¼ ∑

nðωÞ

k ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SF ðωkÞΔω

p
½ cos ðωktÞu0

kþ sin ðωktÞu″k�

¼ ∑
nðωÞ

k ¼ 1
s0ðωÞ
k ðtÞu0

kþs″ðωÞ
k ðtÞu″k ¼ sðωÞðtÞ � u ð2Þ

where n¼ 2nðωÞ is a measure of the resolution of the discretization,
u¼ fu0

1;u″1;u0
2;u″2;…;u0

n=2;u″n=2gT is an n-vector of standard nor-

mal random variables, sðωÞðtÞ ¼ f s01ðωÞ s″ðωÞ
1 … s0n=2ðωÞ s″ðωÞ

n=2 g
T

is an n-vector of deterministic shape functions dependent on the

PSD of the process, being s0kðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SF ðωkÞΔω

p
cos ðωktÞ and

s″ðωÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SF ðωkÞΔω

p
sin ðωktÞ; here the superscript “ω” refers to

the discretization of the input in the frequency domain. To obtain a
good approximation of Fðt;uÞ the frequency step is Δωr ð2πÞ=t,
being t the time instant when the input process reaches statio-
narity; if t is equal to the last time instant of (1) and choosing
Δω¼ ð2πÞ=t so that nðωÞ ¼ nðτÞ=2, then the (2) corresponds to (1),
in the sense that the PSD SF ðωÞ is sampled at the frequencies
0;ω1;ω2;…;ωn=2 that we would obtain by applying the discrete
Fourier transform (DFT) to each sample of (1). Under these
conditions the variance of a band-limited white noise excitation
of intensity SW by using (2) is s2

F ¼ ð2πSW Þ=Δt.

3. An alternative Gaussian approximation of the system
response

Consider the response of a dynamical system to the excitation
in (1)or (2). Owing to the random variables u, the response is
stochastic and we denote it as Xðt;uÞ. For a specified threshold x
and time t, we define the tail probability as Prob½Xðt;uÞZx�. To
apply the tools of the structural reliability theory, we define the
limit state function (LSF)

gðx; t;uÞ ¼ x�Xðt;uÞ ð3Þ
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