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a b s t r a c t

Probabilistic inversion is used to take expert uncertainty assessments about observable model outputs
and build from them a distribution on the model parameters that captures the uncertainty expressed by
the experts. In this paper we look at ways to use minimum information methods to do this, focussing in
particular on the problem of ensuring consistency between expert assessments about differing variables,
either as outputs from a single model or potentially as outputs along a chain of models. The paper shows
how such a problem can be structured and then illustrates the method with two examples; one involving
failure rates of equipment in series systems and the other atmospheric dispersion and deposition.

& 2013 Published by Elsevier Ltd.

1. Introduction

An important element of Probabilistic Risk Analysis is assess-
ment of uncertainty in model outputs. Physical models do not
perfectly represent the phenomena they are meant to describe for
many reasons: lack of complete understanding of the physical
phenomena, deliberate simplifications in the model (for example,
because of the need to run the model quickly), inadequate choice
of model parameters, and so on.

Bedford and Cooke [1] stress the importance of assessing
uncertainties for observable quantities when using probability.
Since it is typically model outputs that are observable quantities,
and many model parameters are not directly observable (maybe
having no direct physical interpretation) it is therefore necessary
to consider ways of taking probability distributions that describe
the uncertainty in model output quantities and “back-fitting” these
to generate a distribution on the model parameters so that this
matches the uncertainty specified for the output parameters in the
following sense: If we randomly choose a set of model parameters
and compute the model outputs then those outputs are also
random. The distribution of the outputs obtained is called the
push-forward of the distribution on the model parameters and
should match the uncertainty for the observable quantities.

The problem of Probabilistic Inversion (PI) is simply the problem
of computing a distribution on the model parameters with the
property that its push forward matches that specified for the
distribution on the observable quantities. See Bedford and Kraan
[2] and Kurowicka and Cooke [3] for different approaches to this

problem. Having defined an uncertainty distribution on the model
parameters, this then allows us to make predictions, incorporating
our uncertainty, on model outputs for any set of model inputs.

The probabilistic inversion problem is typically either under- or
over-specified. This means that the constraints imposed by the
output distributions are either not sufficiently strong to lead to a
single solution to the PI problem or they are mutually contra-
dictory, and give rise to an infeasible problem.

Previous approaches have used minimally informative distri-
butions to solve the problem of under-specification, and have
either ignored the problem of infeasibility or used slightly ad hoc
approaches to deal with it. This paper develops the ideas proposed
in Bedford [4] to use minimum information methods [5,6] to
provide guidance in the specification of constraints that are not
infeasible. It also gives a method to map out the feasible region for
the constraints. Minimum information methods use constraints on
expected values rather than quantile information, though we
discuss how quantile information can be incorporated.

The paper generalizes the context given above to one of the
“coupled” models, that is, the situation where we have several
models which are sequentially linked in the sense that the outputs
of the first are the inputs of the second, and so on. Hence
specifications may be made of distributions of input and output
parameters, and the distributions on the model parameters are
supposed to push forward to these.

The main contribution of this paper is therefore to show how
the minimum information approach can be used to generate
solutions to the PI problem in the context of coupled models.
The rest of the paper is structured as follows. In Section 2 we
provide the mathematical setup to the problem, considering
coupled models and minimum information modelling. In Section
3 we outline the solution to the continuous PI problem for coupled
models and in Section 4 we give the equivalent solution to the
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discretized problem. Section 5 investigates the specification of
feasible constraints for the coupled PI problem and considers the
effect of fixing the constraints. In Sections 6 and 7 we provide two
examples; the first considering the failure rates of machines
located in series and the second based on the dispersion and
deposition problem considered by Kraan in [7]. Finally, in Section 8,
we give some conclusions and a discussion of areas for further
work.

2. Mathematical setup

2.1. Coupled models

We consider models Mi taking input parameters yi and giving
output parameters yiþ1. So the output of model 1 is the input for
model 2. The models are deterministic models, but are assumed
to have parameters (which may be vectors) that we denote xi.
An illustration of this situation is given in Fig. 1.

Some of the parameters may be directly measurable. Some we
might be able to choose. However, often the model parameters are
not known directly and we have to infer them, or infer uncertainty
distributions over them. The inputs and outputs of the models are
observable quantities in principle, and we may therefore be able to
use expert judgement to assess distributions or expected values.
In probabilistic inversion we try to find a distribution for the
parameters that matches (when propagated through the model) the
distributions specified by the experts for the observable quantities.

As noted above, the PI problem is typically either over- or under-
constrained. Over-constraint happens because the quantities to be
assessed are typically functionally related through the model, so it is
easy for experts to provide information on observables that is
mutually inconsistent (assuming the model is correct). Under-
constraint happens because there is consistency but there is still
not enough information to uniquely determine the distribution on
the parameters. In our approach we use a minimum information
property to solve the problem of under-constraint, and a sequential
approach to expert elicitation to avoid the problem of over-
specification.

2.2. Minimum information modelling

Suppose we have continuous random variable X, which could
be multi-dimensional, and two densities, f 1ð�Þ and f 2ð�Þ. Then the
relative information of f 1ð�Þ to f 2ð�Þ is a measure of how similar the
two distributions are. It is defined as

Iðf 1jf 2Þ ¼
Z

f 1ðxÞ log
f 1ðxÞ
f 2ðxÞ

� �
dx:

If f 1ð�Þ ¼ f 2ð�Þ then the relative information is zero. It then increases
as the deviation between the two distributions becomes greater.

In the problems considered in this paper we wish to find the
distribution, f 1ð�Þ, which has minimum information, with respect
to the background distribution f 2ð�Þ, subject to some real valued

functions h1…;hk taking expectations α1;…; αk. These are known
as the constraints. The choice of background distribution is an
important consideration as this specifies what f 1ð�Þ should look
like in the absence of more specific information. Typical choices
might be the uniform, log-uniform and Normal distributions (but
this can be subject to sensitivity analysis as we discuss later).

The minimum information distribution is therefore, in some
sense, the “simplest” distribution which satisfies the required
criteria. If, relative to the background distribution, this distribution
exists then it is unique and takes the form [8]

f ðxÞ ¼ exp ∑k
i ¼ 1λihiðxÞ

� �
ZðλÞ ; ð1Þ

for Lagrange multipliers λ¼ ðλ1;…; λkÞ (depending on α1;…; αk),
where ZðλÞ is the normalizing constant. An important contribution
of this paper is a procedure which provides a method of specifying
the constraints using expert elicitation which ensures such a
unique minimally informative solution exists. We can approximate
this density arbitrarily well using discrete densities

pðxjÞ∝exp ∑
k

i ¼ 1
λihiðxjÞ

( )
; ð2Þ

where xj, j¼1,…,n, is a suitable discretization of x. A derivation of
these results is outlined in Bedford and Wilson [9].

We see that, for minimum information problems, constraints
are naturally specified as expectations on functions of the para-
meters. We can incorporate quantile assessments as the expert
judgement by specifying the hi's as indicator functions in terms of
the quantile functions of the parameters. An example is given in
Bedford et al. [10] and the technique is used in the failure rates
example in Section 6.

We shall now consider how to evaluate the feasible values of
constraints when the specifications of those constraints are made
sequentially. Initially we consider the continuous problem.

3. The continuous problem

Consider a collection of parameters from a deterministic model
or sequence of models, denoted X. In general X could have a large
number of dimensions. Suppose that expert elicitation results in
the specification of the expectations of some functions, h1;…;hp,
of these parameters, denoted α1;…; αp. These are the constraints in
the problem. We wish to find the distribution with minimum
information which satisfies these expectations.

As we saw in the previous section this minimum information
distribution has a density at x which is proportional to

exp ∑
p

i ¼ 1
λihiðxÞ

( )
;

for some parameters λ1…; λp. We can define the function ϕ :

Rp-Rp so that ϕ gives the expected values obtained from
choosing the minimum information distribution with parameters
λ1;…; λp. That is,

ϕðλ1…; λpÞ ¼ ðα1;…; αpÞ:
In particular,

ϕðλ1;…; λpÞ ¼
R
h1ðxÞ expf∑iλihiðxÞg dxR

expf∑iλihiðxÞg dx
;…;

R
hpðxÞ expf∑iλihiðxÞg dxR

expf∑iλihiðxÞg dx

� �
:

The function ϕ is invertible and has good analytical properties.
We wish to specify α1 and use this to explore the possible

values α2 can take. Having done this the next step is to find the
possible values for α3 having specified α1;α2. We can continue in
this way, evaluating the possible specifications of each expectation
consistent with previously specified values, until all of theFig. 1. A diagram illustrating the form of coupling of models.
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