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a b s t r a c t

Weigh-in-Motion (WIM) systems are used, among other applications, in pavement and bridge reliability.
The system measures quantities such as individual axle load, vehicular loads, vehicle speed, vehicle
length and number of axles. Because of the nature of traffic configuration, the quantities measured are
evidently regarded as random variables. The dependence structure of the data of such complex systems
as the traffic systems is also very complex. It is desirable to be able to represent the complex
multidimensional-distribution with models where the dependence may be explained in a clear way
and different locations where the system operates may be treated simultaneously.

Bayesian Networks (BNs) are models that comply with the characteristics listed above. In this paper
we discuss BN models and results concerning their ability to adequately represent the data. The paper
places attention on the construction and use of the models. We discuss applications of the proposed BNs
in reliability analysis. In particular we show how the proposed BNs may be used for computing design
values for individual axles, vehicle weight and maximum bending moments of bridges in certain time
intervals. These estimates have been used to advise authorities with respect to bridge reliability.
Directions as to how the model may be extended to include locations where the WIM system does not
operate are given whenever possible. These ideas benefit from structured expert judgment techniques
previously used to quantify Hybrid Bayesian Networks (HBNs) with success.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Weigh-in-Motion (WIM) systems are technologies that allow
trucks to be weighed in the traffic flow without disruption of
traffic operations. For a recent overview of WIM systems see [1].
The system has been developed since the 1950s with the purpose
of reducing threats to roads transport operations from overloaded
trucks. WIM aims at helping minimize problems related to the
following:

� Avoiding accidents by detecting overloaded traffic for example
due to increased truck instability, breaking faults, loss of
movability and maneuverability or increased tire overheat.

� Damage to infrastructure by helping to prevent damage to
pavement and bridges.

� Economic impact by helping to avoid distortions in freight trans-
port competition, between transport modes (rail vs. waterborne or
road) and between road transport companies and operators.

WIM systems may be classified as Low Speed (LS) and High
Speed (HS) systems. The LS-WIM is installed either outside the
traffic lanes or on weighing areas, or in toll gates or any other
controlled area. The operating speed is generally in the range of
5–15 km/h. The accuracy of the system can be 3–5%. For the HS-
WIM, sensors are installed in one or more traffic lanes. They
measure axle and vehicle loads while these vehicles are traveling
at normal speed in the traffic flow. HS-WIM allows the weighing of
almost all trucks crossing a road section. Their accuracy is 10–25%
for approximately 95% of the gross weights [1]. In our applications
this accuracy level has been accepted and treated in the results for
advise to the authorities within model uncertainties.

In the Netherlands the Dutch Ministry of Transport, Public Works
andWater Management has operated since 2001 the WIM system [2].
The system implements the Video WIM and automatic vehicle
identification. This concept was originally developed in North America
and the Netherlands itself. In the Netherlands, piëzo-quartz sensors
are chosen for the WIM system. The WIM system is coupled to video
cameras equipped with automatic license plate number recognition.
The pictures and different measurements of all vehicles are recorded
and stored in a database. Whenever no weighing area is available,
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warnings are sent to suspected violators which are most frequently
cited. The database serves also for research purposes.

For every vehicle, variables recorded by the system in the
Netherlands include vehicle speed, vehicle length, inter axle separa-
tion, axle weight and vehicular weight. With these variables, other
may be inferred, for example, the total number of axles, the inter-
vehicular separation or the average number of vehicles per unit time.

The nature of the overloaded traffic in time is evidently random.
The data collected by the WIM system constitutes in general a
complex probability distribution on the random variables listed
above. It is desirable to represent the complex multidimensional-
distribution with a model such that (a) the quantification can be
made with a reduced number of parameters, (b) dependence may be
explained in a more transparent way, (c) inference may be performed
cost-efficiently in terms of computational time and (d) all locations
over the Netherlands where the WIM system gathers information
about traffic load may be treated simultaneously.

Bayesian Networks (BNs) offer an opportunity for a model with
the four characteristics listed above. BNs are graphical models that
attempt to represent a joint distribution in a compact way. They
are increasingly gaining popularity as models for dependence [3].
They are also increasingly being used in reliability analysis (see for
example [4]). The most popular version of BNs are those that
handle exclusively discrete networks. However, recent develop-
ments in BNs have made it easier to handle discrete and contin-
uous variables in a single network. These are most commonly
referred to as Hybrid BNs (HBNs). An overview of some of the
possibilities available for inference in hybrid BNs is presented in
[5]. The class of Hybrid BN presented in this paper corresponds to
Non-parametric BNs (NPBN).

In this paper we introduce NPBNs for the WIM system in the
Netherlands. Our main objective is to discuss the type of BN
models that may be constructed with WIM data. These models are
discussed in the context of advise given to the Dutch authorities
for bridge and road reliability. Alternative sources of data are
discussed. The models presented are generic and may be quanti-
fied for other locations inside (if they become available) or outside
the Netherlands where WIM systems (or other similar systems)
operate. These models may also be used in combination with each
other or with other techniques according to the question of
interest. The models presented have been quantified with data
from eight locations in the Netherlands. These are highways 04, 12,
15 and 16 in the left and right directions.

The remainder of this paper is divided as follows: in Section 2
we present the main concepts and definitions corresponding to the
class of BNs to be used in this paper. In Section 3 we introduce four
BNmodels quantified with WIM data. The first one corresponds to a
model for individual axle loads (Section 3.2). The second one to a BN
for traffic intensities as measured by theWIM system and compared
with alternative data sources (Section 4.1). This comparison could
be helpful when similar models need to be quantified through
expert judgments. Section 4.2 presents a large scale BN consisting of
705 nodes representing one dimensional margins and more than
2300 arcs. This BN is discussed at length elsewhere [6]. Section 4.3
presents a dynamic BN used for combining traffic information with
load variables. The networks are discussed in terms of their use in
reliability analysis. As discussed before, our purpose is to give an
overview of the models currently used to advise different infra-
structure authority levels in the Netherlands.

2. Hybrid Bayesian Networks

We will understand Bayesian Networks as directed acyclic
graphs (DAGs) whose nodes represent univariate random variables
and whose arcs represent direct influences between nodes sharing

an arc. A BN encodes the probability density or mass function on a
set of variables X¼ fX1;…;Xng by specifying a set of conditional
independence statements in the DAG associated with a set of
conditional probability functions. It thus provides a representation
of a high dimensional probability distribution on the set
fX1;…;Xng. The d-separation criterion provides the criteria for
reading conditional independence statements of the graph. The
criteria center around the three possible network ‘pieces’:

(a) The structure states that without observing
X2, observing X1 would say something about the distribution of
X3. That is X1 is not marginally independent of X3 (X1 X3).
However if X2 is known, then X1 would not add extra
information to explain X3, that is X1 and X3 are conditionally
independent given X2 (X1 ? X3jX2)

(b) The BN is similar as in (a), i.e. X1 X3

marginally but X1 ? X3jX2.
(c) Finally indicates that X1 ? X3 marginally

however X1 X3jX2. That is, if we observe X1 (X3) without
observing X2 that would say nothing about X3 (X1). If on the
contrary, we observe X2 then observing X1(X3) will say some-
thing additional about the distribution of X3 (X1).

A larger description of the semantics of a BN may be found in
[7]. Examples in the context of reliability are given in [4]. The
d-separation criterion implies that every variable is conditionally
independent of its ancestors given its parents. Hence if every
variable is associated with a conditional probability function of the
variable given its parents f Xi jPaðXiÞ then the joint probability may be
written as

f X1 ;…;Xn
¼ ∏

n

i ¼ 1
f Xi jPaðXiÞ ð1Þ

If PaðXiÞ ¼∅ then f XijPaðXiÞ ¼ f Xi
. Observe that whenever fX1;…;Xng

includes both discrete and continuous nodes we are in the class
of HBNs.

One of the most powerful properties of BNs is their ability to
perform inference. By inference in this paper we mean updating
the marginal distributions of a subset of variables when evidence
(observations) from a different subset is known. In general the
problem of inference has been more studied in the context of
discrete BNs. Performing inference in HBNs has proved to be more
challenging. Inference may be exact or approximative. Approxi-
mative inference is most common in HBNs. In [5] five types of
approximative inference for HBNs are presented. In [8] and [9]
Enhanced BNs (eBNs) are introduced as another possibility to
perform inference in HBNs. The references above do not consider
NPBNs. A detailed comparison of the different techniques is out of
the scope of this paper. Thus in the rest we focus only on NPBNs.

2.1. Non-parametric Bayesian Networks

Non-parametric Bayesian Networks were introduced in [10]
and extended in [11]. The theory of NPBNs is built around bivariate
copulas [12,13]. The bivariate copula or simply the copula of two
continuous random variables Xi and Xj with ia j is the function C
such that their joint distribution can be written as

FXi ;Xj
ðxi; xjÞ ¼ CθðFXi

ðxiÞ; FXj
ðxjÞÞ: ð2Þ

Observe that the copula function in Eq. (2) is indexed by θ. This
is because copulas are functions that allow naturally the investiga-
tion of association between random variables. For one parameter
copula families, θ provides a relationship between the copula
and measures of association such as the rank correlation (r) or
Kendall's tau.
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