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a b s t r a c t

As emphasis is being placed on a system0s ability to withstand and to recover from a disruptive event,
collectively referred to as dynamic resilience, there exists a need to quantify a system0s ability to bounce
back after a disruptive event. This work applies a statistical technique from biostatistics, the proportional
hazards model, to describe (i) the instantaneous rate of recovery of an infrastructure system and (ii) the
likelihood that recovery occurs prior to a given point in time. A major benefit of the proportional hazards
model is its ability to describe a recovery event as a function of time as well as covariates describing the
infrastructure system or disruptive event, among others, which can also vary with time. The proportional
hazards approach is illustrated with a publicly available electric power outage data set.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The resilience of infrastructure systems, both in the US and
globally, is of significant concern. Following the events of Septem-
ber 11, 2001, the primary planning concern revolved around the
protection from and prevention of terrorist attacks. However, as
accidents and natural disasters become more prevalent and more
impactful (e.g., Hurricanes Katrina and Rita in 2005, the Deepwater
Horizon oil spill in 2010, the Japanese earthquake and tsunami in
2011), recent efforts have been placed on resilience, or the ability
to “bounce back,” from such disruptions. Demonstrated in several
works on resilience [1–6] is the significance of accepting that
disruptions will indeed occur and focusing on two aspects:
(i) lessening the impact of such disruptions, and (ii) improving
the speed with which recovery occurs. As such, the US Department
of Homeland Security [7] emphasizes “strengthen national pre-
paredness, timely response, and rapid recovery” of US infrastruc-
ture, particularly due to their interconnectedness with other
infrastructure, industries, and the workforce. Resilience is often
described as a function of robustness, or the ability of a system to
resist the initial adverse effects of a disruptive event, and rapidity,
or the rate or speed at which a system is able to return to an
appropriate operability following the disruption [8]. Modeling the
rapidity aspect of resilience, particularly as a rate of recovery, is
addressed in this work.

Introduced here is a data-driven statistical technique to model
the recovery of infrastructure systems following a disruptive
event. Guikema [9] provides an introduction to the use of
statistical methods (e.g., generalized linear models) for performing

probabilistic risk analysis, with several applications in modeling
and estimating the initial impacts of natural disasters to electric
power service [10,11], among other infrastructures [12,13]. MacK-
enzie and Barker [14] apply regression to the study of interdepen-
dent recovery following an electric power outage to populate
parameters in a multi-industry interdependency model.

This work describes the proportional hazards model (PHM)
[15], a standard survival analysis technique in biostatistics with
applications found in reliability engineering, as a means to derive
a temporal, condition-based rate of recovery for infrastructures
impacted by a disruptive event. Reliability growth can be
described as a function of the dynamic assumptions of the under-
lying system [16]. Reliability applications of PHM include analyz-
ing factors that impact the reliability behavior of systems and
components [17] and planning for preventive maintenance repairs
due to degrading condition variables [18].

Similar to the reliability analysis, policymakers should strive for
improved resilience analysis encompassing the recovery dynamics of
a disrupted system. Preparedness activities should not only enhance
the reliability of the system but also its resilience (e.g., its strength in
responding to and recovering from a disruption [19]). Further,
decisions should be made prior to and in the aftermath of a
disruption to effectively allocate resources to reduce impacts [20]
and enhance recovery activities [21]. Resilience modeling so far has
been concerned with the optimization of preparedness and resource
allocation strategies under different circumstances, but no research
exists that models the trajectory of recovery over time given external
and internal impacts. Different systems have different recovery
paths due to their structure, the nature of the disruption, the
surrounding environment, among many other factors.

A model that can capture this relationship and translate the
evolution of recovery over time is the PHM. We extend the use of
the PHM, primarily used herein to model failure rate or infection
rate (and sparse applications in modeling repair rates [22,23]), to
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model recovery rate and supplement the rapidity component of
existing resilience paradigms. As will be depicted later, we model
time-to-recover and its associated covariates rather than the
tradition time-to-failure in traditional reliability analysis.

Section 2 provides background on the PHM, while Section 3
discusses its use in the infrastructure recovery context, with an
application in recovery from electric power outages from publicly
available data. Concluding remarks are provided in Section 4.

2. Methodological background

Survival analysis is a technique used to describe the duration
between events. Many phenomena in medical research, engineer-
ing, and economics can be described using survival analysis
techniques. For example, medical histories [24–26] and the failure
of engineered systems [27–29] have been described using survival
analysis. Survival distributions can be described by four functions
at time t: (i) the probability density f(t), (ii) the cumulative
distribution function F(t), (iii) the survivor (or reliability [30])
S(t)¼1–F(t), and (iv) the hazard h(t)¼ f(t)/S(t) functions. One
means to estimate the survival function with the incorporation
of covariate effects, or the risk factors influencing the occurrence
of and duration between events, is the proportional hazards model
(PHM) [15].

Provided in Eq. (1), the PHM hazard function describing the
rate at which failures occur is a function of a time-driven baseline
hazard function, h0ðtÞ, and the state/condition of the system (or
covariates influencing the hazard), vector xðtÞ. β is a vector of
regression coefficients reflecting the effect of the state of the
system on the hazard function.

hðt; xðtÞÞ ¼ h0ðtÞexpðβTxðtÞÞ ð1Þ
Generally speaking in a reliability engineering context, h0ðtÞ can be
derived from a pdf fit to time-to-failure data. A system is viewed
periodically during inspection, and at each inspection time ti, the
covariates xðtiÞ are recorded, as well as a 0/1 indicator of “no
failure” or “failure.” Regression parameters are then fit using the
method of maximum likelihood. Likewise for a biostatistics appli-
cation, patients are observed at ti, physical characteristics xðtiÞ of
the patient are recorded, and the presence or absence of an
ailment is noted.

A primary reason for its popularity is that it allows the ability to
assess the effect of covariates on the hazard function, and
ultimately the likelihood of the event, with a semi-parametric
approach, (i.e., solving for β without specifying a baseline hazard
function, h0(t)). As such, the typical use of the PHM is used for
descriptive purposes (i.e., identifying factors that significantly
impact hazard/survival and interpreting the elements of β), not
prescriptive purposes (i.e., actually estimating hazard/survival
given a set of covariates) (e.g., [31]). Another reason for the
popularity of PHM in certain contexts is that observations can be
censored, a term to describe when an event is incomplete for an
observation during the observed period (e.g., when applying PHM
to model the occurrence of cancer in patients, some patients may
leave the study without cancer appearing). Such censored obser-
vations are no less important than those for whom observation is
complete, and they would not be included in other similar
statistical methods (e.g., logistic regression). The survival function
is estimated using the Breslow estimator, where the function takes
the form of a step function due to the assumption that hazard
between distinct failure points is constant [26].

Other approaches can incorporate the effects of covariates on
the hazard function or the probability of event occurrence. Gen-
eralized linear models can determine the likelihood or rate of
occurrence of an event given covariates with a wide range of

distributions for the link function, though their ability to capture
time-varying conditions is lacking [32]. The accelerated failure
time model is used especially when an underlying hazard function
is known, or when the baseline hazard function would vary from
observation to observation [33]. A more general representation of
the relationship among the survivor function Sðt; xÞ and the base-
line survival function S0ðtÞ is the Royston–Parmar family of models
which rely on the transformation gðdÞ such that gðSðt; xÞÞ ¼
gðS0ðtÞÞþβTx, where gðdÞ can represent the proportional hazard,
proportional odds, or probit families [34]. However, the PHM can
account for the effect of time-varying covariates, x(t), particularly
useful for post-disruption decision making as the state of the
system can vary over time. Allison [35] points out that the
approach given time-varying covariates is technically a non-
proportional hazards model. More specifically, the PHM assesses
time independent covariates while an extension of the PHM (e.g.,
Cox regression, extended Cox regression) model time-varying
covariates or a combination thereof [22,36,37,35].

3. Infrastructure recovery with proportional hazards models

The use of PHMs has mostly been limited to describing hazard
(or failure) rates, though many other important data-driven rates
of occurrence can be described as a function of (i) time, and (ii)
covariates. As such, the idea of modeling the time-dependent,
state-of-the-system-dependent evolution of occurrence rates is
extended in this work to modeling the rate of recovery of
infrastructure systems following a disruptive event. As parameter
μ is often used in maintenance context to describe repair, such
notation is adopted in Eq. (2). The usefulness of μðt; xðtÞÞ lies in
modeling how recovery rate changes over time (e.g., recovery rate
would likely decrease over time after the initial disruption),
perhaps more so when accounting for xðtÞ. Recalling that resilience
is a function of robustness and rapidity, when paired with robust-
ness, this innovation in the PHM will help derive the concept of
rapidity from data sources. Eq. (2) accounts for both time inde-
pendent and time-varying covariates, x and x(t), respectively.

μðt; xðtÞÞ ¼ μ0ðtÞexpðβTxþβTxðtÞÞ ð2Þ
Further, the likelihood V ðt; xðtÞÞ of full recovery before time t and
under condition x(t), shown in Eq. (3) is extended from the
reliability literature: Vðt; xðtÞÞ would be the equivalent of the
cumulative distribution function for failure, or the probability that
the event occurs prior to time t when xðtÞ is exhibited at t. This
measure would provide a decision maker with an idea of how
likely it is that recovery will occur by a given point in time and for
a given set of covariates (potentially time-varying covariates
representing state variables at time t).

Vðt; xðtÞÞ ¼ 1�exp �
Z t

0
μðy; xðyÞÞdy

� �
ð3Þ

A qualitative illustration of Eqs. (2) and (3) could include the
response to and recovery of disrupted highway segments by
dispatching emergency assistance vehicles. Time-invariant covari-
ates could include the particular highway segment, number of
vehicles involved, response category issued, and the location from
which emergency assistance was transmitted. Time-varying cov-
ariates could include the number of responders expediting the
cleanup. Periodic review of the accident could result in a 0/1
outcome of “cleanup still underway” or “cleanup complete and
traffic resumed.” μðt; xðtÞÞ would provide decision makers with an
idea of how the recovery rate progresses over time with certain
covariate values. Similarly, V t; x tð Þð Þ provides the likelihood that
recovery will occur prior to time t under certain conditions models
with the covariates.
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