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In risk analysis, Cooke’s classical model for aggregating expert judgment has been widely used for over
20 years. However, the validity of this model has been the subject of much debate. Critics assert that this
model’s scoring rule may unintentionally reward experts who manipulate their quantile estimates in
order to receive a greater weight. In addition, the question of the number of seed variables required to
ensure adequate performance of Cooke’s classical model remains unanswered. In this study, we conduct
a comprehensive examination of the model through an iterative, cross validation test to perform an out-
of-sample comparison between Cooke’s classical model and the equal-weight linear opinion pool
method on almost all of the expert judgment studies compiled by Cooke and colleagues to date. Our
results indicate that Cooke’s classical model significantly outperforms equally weighting expert
judgment, regardless of the number of seed variables used; however, there may, in fact, be a maximum
number of seed variables beyond which Cooke’s model cannot outperform an equally-weighted panel.

Published by Elsevier Ltd.

1. Introduction

Obtaining advice from experts is a universal heuristic that is
used to gain insight from those who are considered to have
superior knowledge within their field in an attempt to examine
or assess some unknown variable or variables. Codifying and
combining expert knowledge to represent the uncertainty or risk
in decision analysis is of particular interest when data, with which
a model can be established or sufficient statistical inference made,
are not available [1]. Relatively easy to understand and implement,
Cooke’s classical model for aggregating expert judgment has been
widely used in the field of risk analysis for over 20 years [2-5].
Cooke’s model, firmly rooted in sound mathematical principles,
evaluates expert responses to training questions (called seed
variables) in order to determine the accuracy and variability in
their performance. Weights are then assigned to each expert and a
combined distribution is established and applied to, as yet,
unknown variables of interest (called target variables).

Undoubtedly, Cooke’s classical method has been subjected to
much academic rigor. Clemen [2] opened the most recent assess-
ments of the classical model by suggesting the use of out-of-sample
evaluations between Cooke’s performance weighted decision maker
(PWDM) versus an equally weighted decision maker (EWDM). He
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asserted that because the same set of data used to calculate the
consolidated decision maker weighting are used again to measure
the method’s performance, the assessment may be skewed in the
classical method’s favor [2]. Looking at 14 studies from Cooke and
Goossen'’s [4] database, Clemen determined that the performance-
based method did not appear to be better than simply equally
weighting expert judgments. Because Clemen’s assessment had
only been performed on a subset of Cooke’s database, Lin and
Cheng [6] extended this analysis by conducting leave-one-out
cross-validation tests on almost all of the studies acquired by Cooke
and Goossen at the time. Their results showed that the classical
model did maintain a slight advantage over the equal weight
method [6]. However, they opined that this slight advantage may
not justify its use when faced with the added effort (and cost)
required for its implementation.

Conversely, Cooke suggested that a leave-one-out or remove-one-
at-a-time (ROAT) cross validation may be too narrow in scope and
inadvertently reward or penalize the pool of experts [7,8]. By exclud-
ing only one seed variable, there may be a tendency to favor the
experts who assessed that particular seed poorly while punishing the
experts who assessed that particular seed well. Instead, Cooke
presented a two-fold cross validation whereby each data set was
equally bifurcated and analysis performed. In 20 of 26 validation runs,
the PWDM out-performed the EWDM. Flandoli et al. [9] performed a
similar analysis on data from five studies by conducting a two-fold
cross validation after splitting the datasets into combinations of 70%
seed variables and 30% target variables. Their results showed that
Cooke’s model provided the best indication of uncertainty when
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averaged across the over 500 possible combinations. These results
upheld Cooke’s call for a two-fold cross validation. However, a more
complete analysis seems necessary.

In all the studies cited, the problem of the number of seed
variables required to adequately employ Cooke’s classical model
remains an open question. While no definitive answer has been
provided in current literature, Clemen [2] suggested that a “safe”
threshold of seed variables is most likely greater than 10. Recently,
Lin and Huang [8] suggested that the number of seed questions
used did have an effect on the calibration of aggregated expert
judgment distributions. Thus, in this study, we conduct a compre-
hensive analysis on almost all of the expert judgment studies
compiled by Cooke and colleagues to date and introduce a novel
iterative, cross validation test to explore the seed variable require-
ment. This test is then used to compare the performance between
Cooke's classical model, the PWDM, and a simple average of expert
judgment, the EWDM. The results of this study will be important
to the field of risk analysis by expanding the utility of expert
judgment aggregation methods. We purposely omit the perfor-
mance of the best expert in this study due to the immense
computational workload and the seemingly overwhelming evidence
suggesting that method's inferiority [2,4-6,8,9].

In Section 2, the methods used to conduct this study are
discussed, to include Cooke's classical model, the iterative cross
validation technique, and the methods of comparison. In Section 3,
the results of our analysis are presented. In Section 4, we discuss
our conclusions and the utility to the field of risk analysis.

2. Materials and method
2.1. Combining expert judgment

The use of expert judgment to aid in forecasting and decision
analysis became a focus of research after World War II [3]. Expert
judgment is of particular interest when data are not available to
adequately perform statistical analysis and/or simulate [1,10].
Several techniques to quantify and aggregate expert judgment
have been proposed throughout the years and are generally
categorized as either mathematical or behavioral [11]. Behavioral
techniques, such as the Delphi method [12], are dubious because
they can become infected by psychological biases that may affect
the validity of the technique's results [3]. Mathematical techniques,
on the other hand, seek to eliminate these biases while providing
some statistical inference that can explicitly quantify the level of
uncertainty of some future outcome [13].

Mathematical methods of combination can be classified as
either axiomatic or Bayesian. Several Bayesian approaches that
associate a likelihood function to the expert's judgment are called
out in literature, but they are considered difficult to apply [1]. By
contrast, axiomatic approaches are considered relatively straight-
forward and can be easily calculated. The simplest example is the
linear opinion pool which is simply a weighted sum of individual
distributions. If we let p;(@) represent each expert i's assessment or
probability distribution, then p(9) is the aggregated distribution
where:

pO)= 3 wip®) M

where n is the total number of experts, and w; represents each
expert’s normalized weight [14]. Another approach is the logarith-
mic opinion pool which uses multiplicative averaging. The difficulty
when exercising these approaches lay in the appropriate assign-
ment of weights to each expert [15].

If we were to ask an expert to assess the probability of occurrence
for the value of a variable, a well-calibrated expert’s assessment would

closely match the value’s true probability distribution. Ideally, we
would seek out a pool of experts considered equally knowledgeable
about the variables to be assessed and, therefore, naturally apportion
equal weights. However, Hora [16] has shown both theoretically and
empirically that combining well-calibrated experts by equal weighting
may, in fact, decrease calibration. In addition, it seems that we must
rely on a less than ‘perfect’ panel of experts and place confidence in
the experts who are perceived as superior [17]. As a result, scoring rules
were developed to assess the quality of judgments. Several scoring
rules have been developed throughout the years and are the subject of
current literature [8,13,18-21]. Scoring rules are typically designed to
reward or incentivize the submission of accurate opinions while
penalizing inaccurate ones. A proper scoring rule is one which max-
imizes a respondent’s score or reward only when the elicited judg-
ment equals the actual value of the variable of interest. The classical
model, developed by Cooke [3], is probably the most widely used
method for combining expert judgment and has been applied in a
variety of applications, including its extensive use in risk analysis
[2,4,10]. The classical model is based upon statistical hypothesis testing
and conforms to the principle of proper scoring rules [3].

2.2. Cooke’s classical model

In Cooke’s classical model, an expert's weight is determined
through the combination of that expert’s relative calibration and
information scores obtained from a set of seed variables embedded
within a population of unknown quantities being elicited. The true
values of the seed variables are known only to the decision maker.
The performance measures are then used to generate each expert’s
relative weight. The classical model is calculated again using the
quantities elicited for the target variables (this time without the
benefit of knowing the true values) and combined in a linear opinion
pool. The result is a probability distribution, the decision maker’s
assessment, for each target variable. Although summarized below, a
complete explanation of Cooke’s classical model can be found in [3].

Experts are asked to provide Q={q, ¢>,...,qo} percentile values
which bound R={ry, 15,...,/g} probability bins. Over the set of seed
variables N, an aggregated quantile distribution judgment, S(e)={s;,
So,...,Sr}, is produced and compared to the theoretical probability
distribution, P={p,, pa,....pr}.- The number and distribution of
elicited quantiles can be tailored to the decision maker’s require-
ments. An expert e is considered well-calibrated when the elements
of his or her sample distribution s; (the number of realizations that
fall in the ith probability bin) resemble P. As an illustrative example,
an expert may be asked to provide the 5th, 50th, and 95th
percentiles. These percentiles produce four probability bins with a
theoretical probability distribution P={0.05, 0.45, 0.45, 0.05}. An
expert is considered well-calibrated when approximately 5% of the
known values for the seed variables are lower than the 5th
percentile judgment given by the expert; 45% of the known values
for the seed variables lay between the 5th and 50th percentile
interval, 45% of the known values for the seed variables lay
between the 50th and 95th percentile interval, and 5% of the
known values for the seed variables are above the 95th percentile.

Given R quantiles, the relative information, I(S(e),P), is calculated by:

ISe.P)= 3 sin (S—> @)
i=1 Di

Given the number of seed variables N, it can be shown that the
distribution of 2NI(S(e),P) can be approximated by a chi-squared
distribution with Q degrees of freedom, ;((ZQ) [22]. A minimum
acceptable calibration score or significance level, «, below which
an expert is given zero weight in the analysis, is now introduced.
The value for a is chosen such that if the decision maker’s
assessment were inserted into the expert panel and scored
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