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a b s t r a c t

The paper presents a fairly efficient approximation for the computation of variance-based sensitivity
measures associated with a general, n-dimensional function of random variables. The proposed approach
is based on a multiplicative version of the dimensional reduction method (M-DRM), in which a given
complex function is approximated by a product of low dimensional functions. Together with the
Gaussian quadrature, the use of M-DRM significantly reduces the computation effort associated with
global sensitivity analysis. An important and practical benefit of the M-DRM is the algebraic simplicity
and closed-form nature of sensitivity coefficient formulas. Several examples are presented to show that
the M-DRM method is as accurate as results obtained from simulations and other approximations
reported in the literature.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation

In the context of a probabilistic analysis, the system response
is typically represented by a function of random variables. The
sensitivity of the response to input random variables can be
quantified by the contribution of a random variable to the total
variance of the response. This is the essence of the variance-based
global sensitivity analysis in the literature [1]. The analytical basis
for the global sensitivity analysis comes from ANOVA (Analysis of
Variance) decomposition of the response variance [2]. Although
ANOVA decomposition is conceptually simple, the computation of
variance components of a general response function is rather a
challenging task. The reason is that it involves a series of high-
dimensional integrations for each global sensitivity coefficient.
Therefore, the minimization of computational efforts is a primary
area of research in the variance-based global sensitivity analysis,
and several studies have already been presented in the literature.

The Monte Carlo simulation is the most effective method
for global sensitivity analysis of a general response function.
Smart simulation algorithms have been developed to evaluate

high-dimensional integrals [3,4]. In case of a complex model
however, the simulation method can be so time consuming that
it can deter applications of sensitivity analysis in day to day
engineering practice. This has motivated the development of
simple approximations for the sensitivity analysis.

The most popular approach is based on the concept of high
dimensional model representation (HDMR) [5], in which a com-
plex function is decomposed into a hierarchy of low dimensional
functions in an additive expansion. The HDMR basically creates a
surrogate model, which simplifies the computation [6]. Tarantola
et al. [7] proposed the random balance design (RBD) for sensitivity
analysis of a nuclear waste disposal system. Sudret [8] reviewed
polynomial chaos expansion on surrogate model construction, in
which computation of global sensitivity coefficients is directly
related to expansion coefficients of a PCE model [9]. Given the
vast literature related to sensitivity analysis, the readers are
referred to monographs for a detailed review of methods of
sensitivity analysis [10,11].

1.2. Objective

The main objective of this paper is to simplify the variance-
based global sensitivity analysis using the multiplicative dimen-
sional reduction method (M-DRM), which is an alternative to
a more commonly used additive DRM method. The univariate
M-DRM approximates a complex function of random variables by a
product of one-dimensional functions. This approach significantly
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reduces the computational efforts associated with the variance-
based global sensitivity analysis. Another advantage of M-DRM is
that simple algebraic expressions can be derived for primary, joint-
variate and total sensitivity coefficients, which are easy to use in
practice.

1.3. Organization

The paper is organized as follows. Section 2 summarizes
the background of the sensitivity analysis and introduces key
definitions and notations. Section 3 presents a multiplicative
dimensional reduction method (M-DRM) to approximate high-
dimensional integrals associated with the variance analysis. Six
examples taken from the literature are analyzed using M-DRM in
Section 4, which confirm comparable accuracy of M-DRM solu-
tions. Section 5 presents the conclusions, and computational
details are given in Appendices.

2. Background

2.1. Definitions

The random response of a system, Y, depends on a vector of n
independent random variables, X¼ ½X1;X2;…;Xn�T, via a functional
relationship: Y ¼ hðXÞ. The joint density of X is denoted as f XðxÞ.
The expectation operation is denoted as E½��. Occasionally, a sub-
script is used to denote the random variable (or a vector) with
respect to which the expectation operation is carried out. The
mean and variance of Y are defined in the usual ways as

μY ¼ EX½Y � ¼
R
XhðxÞf XðxÞ dx

VY ¼ EX½ðY�μY Þ2� ¼ EXf½hðXÞ�2g�μ2Y ¼ μ2Y�μ2Y

(
ð1Þ

Note that μ2Y is the second moment of the response Y.
We define a sub-vector X�i of ðn�1Þ elements, which contains

all the elements of X except Xi. Similarly, X�ij is a vector of ðn�2Þ
elements without Xi and Xj. Since the mathematical formulation
extensively utilizes the concept of conditional expectation, it is
defined in a more compact way. We define two conditional
expectations: Y given Xi¼xi and Y given Xi ¼ xi;Xj ¼ xj as

αiðxiÞ ¼ E�i½Y jXi� ¼
R
X�i

hðx�i; xiÞf X�i
ðx�iÞ dx�i

αijðxi; xjÞ ¼ E�ij½Y jXi;Xj� ¼
R
X�ij

hðx�ij; xi; xjÞf X�ij
ðx�ijÞ dx�ij

8<
: ð2Þ

by which one can define other high-order conditional expecta-
tions. It should be noted that expectations of, i.e., αi and αij, etc.,
are equal to the expected value of Y itself:

Ei½αiðXiÞ� ¼ μY ; Eij½αijðXi;XjÞ� ¼ μY ; … ð3Þ
We can also define the zero mean version of these conditional
expectations as

βiðxiÞ ¼ E�i½YjXi��μY ¼ αiðxiÞ�μY
βijðxi; xjÞ ¼ E�ij½YjXi;Xj��βiðxiÞ�βjðxjÞ�μY

¼ αijðxi; xjÞ�αiðxiÞ�αjðxjÞ þ μY
⋯

ð8 j4 iÞ

8>>><
>>>:

ð4Þ

In addition to zero mean, these functions are orthogonal if Xi

are independent, i.e., E½βp1
� βp2

� ¼ 0 (for p1ap2) [5]. Based on
these two properties, the function, Y ¼ hðXÞ, can be decomposed
into a sum of functions of increasing dimensions:

hðXÞ ¼ μY þ ∑
n

k ¼ 1
βiðXiÞ þ ∑

io j
βijðXi;XjÞ þ ∑

io jok
βijkðXi;Xj;XkÞ þ⋯þ β12⋯nðXÞ

ð5Þ
In the literature, this decomposition is referred to as high-di-

mensional model reduction (HDMR) [5] or ANOVA decomposition [2].

In general, a satisfying approximation of Y ¼ hðXÞ can be achieved by
this expansion limited to univariate terms only, i.e., βiðXiÞ, or at most to
bivariate terms βijðXi;XjÞ.

2.2. Variance-based sensitivity measures

Following the decomposition in Eq. (5), the total variance of Y
can also be decomposed as

VY ¼ ∑
n

i ¼ 1
Vi þ ∑

io j
V ij þ⋯ ð6Þ

where

Vi ¼ Ei½β2i ðXiÞ�; Vij ¼ Eij½β2ijðXi;XjÞ�;… ð7Þ
Vi can be interpreted as the expected reduction in the variance VY

obtained as a result of fixing Xi. It is also referred to as primary (or
main) effect. Similarly, Vij is the effect of interaction between Xi

and Xj on VY.
Computation of the primary variance, Vi, for example, can be

formulated as

Vi ¼ Ei½β2i ðXiÞ� ¼
Z
Xi

½αiðxiÞ�μY �2f iðxiÞ dxi ¼ Ei½α2i ðXiÞ��μ2Y ð8Þ

in which

Ei½α2i ðXiÞ� ¼
Z
Xi

Z
X�i

hðxÞf X�i
ðx�iÞ dx�i

� �2

f iðxiÞ dxi ð9Þ

For a general setting about high-order variance components, one
can refer to Appendix A for details.

In a compact form, the primary sensitivity coefficient, Si, can be
expressed as [12–14]

Si ¼
Vi½E�iðYjXiÞ�

VY
¼ Ei½β2i ðXiÞ�

VY
¼ Ei½α2i ðXiÞ��μ2Y

VY
; 0rSir1 ð10Þ

With this definition, all sensitivity indices can be derived, and
added up to one:

∑
n

i ¼ 1
Si þ ∑

io j
Sij þ ∑

io jok
Sijk þ⋯þ S12⋯n ¼ 1 ð11Þ

The concept of the total sensitivity index was first proposed by
Homma and Saltelli [15], which focuses on the reduction in
variance should all input variables but Xi be fixed. This reduction
in variance is defined as V�i½EiðYjX�iÞ�. Thus, remaining variance of
Y after fixing Xi is given as

VTi ¼ VY�V�i½EiðY jX�iÞ� ð12Þ
Together with the identity of total variance, VY ¼ V�i½EiðYjX�iÞ�þ
E�i½ViðY jX�iÞ�, the total sensitivity index can be derived as

STi ¼
VY�V�i½EiðY jX�iÞ�

VY
¼ E�i½ViðYjX�iÞ�

VY
ð13Þ

3. Computation of sensitivity coefficients

Although ANOVA decomposition of Y is conceptually simple, its
computation in a general setting is a challenging task as it involves
two-layer high-dimensional integrations for each of the sensitivity
coefficient. For example, computation of Vi involves first the compu-
tation of an ðn�1Þ dimensional integration for αiðxiÞ ¼ E�i½Y jXi� in
Eq. (2), and then another integration associated with Ei½β2i ðXiÞ� as
shown in Eq. (7). The complexity of integration increases with
number of interaction terms in the sensitivity coefficients, e.g., Sij,
as shown in Appendix A.

Monte Carlo simulation is the most effective method to
evaluate such high-dimensional integrals, and various smart
schemes have been developed in the literature for this purpose
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