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a b s t r a c t

Sensitivity analysis aims at quantifying influence of input parameters dispersion on the output dispersion
of a numerical model. When the model evaluation is time consuming, the computation of Sobol' indices
based on Monte Carlo method is not applicable and a surrogate model has to be used. Among all
approximation methods, polynomial chaos expansion is one of the most efficient to calculate variance-
based sensitivity indices. Indeed, their computation is analytically derived from the expansion
coefficients but without error estimators of the meta-model approximation. In order to evaluate the
reliability of these indices, we propose to build confidence intervals by bootstrap re-sampling on
the experimental design used to estimate the polynomial chaos approximation. Since the evaluation of
the sensitivity indices is obtained with confidence intervals, it is possible to find a design of experiments
allowing the computation of sensitivity indices with a given accuracy.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Performing global sensitivity analysis is often a major step in
uncertainties propagation studies. It helps to understand how
uncertainties of a quantity of interest could be explained and
reduced. Different types of sensitivity analysis can be performed
(see [21]). This paper focuses on variance-based ones, computed
by polynomial chaos expansion. Sensitivity indices, coming from
variance decomposition (ANOVA), are relevant informations as
they allow one to quantify effect of a variable (alone or in inter-
action with one or more variables) but require estimate of many
partial variances (see [21] for a description of sensitivity indices).
When these partial variances cannot be expressed analytically,
which is often the case in industrial applications, a Monte Carlo
based method, developed in [23], leads to an approximation of
these indices. If the computation of the model is time consuming
(finite element models for example), Monte Carlo simulations
become unrealistic and a common way to tackle this problem is
the use of a meta-model. In this case, the idea is to replace the true
model by an analytical one as precise as possible and then to use it
in the Monte Carlo methodology. This involves two types of error:
a meta-modelling error coming from the difference between the

true model and its approximation and a sampling error due to
the Monte Carlo methodology, used for the sensitivity indices
computation.

An efficient way to compute sensitivity indices is to use an
approximation of the model by polynomial chaos expansions
(PCEs). Indeed, [26] shows that sensitivity indices are analytically
calculated with the coefficients of that expansion. Then, the two
types of error, given earlier, are reduced to the meta-modelling
error only. Hence, it is of great importance to quantify and control
it. The quality of meta-models is usually defined as the difference
between the true model and the meta-model. This difference can
be expressed using several error criteria like coefficient of deter-
mination, Mallows Cp, cross-validation, etc. Numerous methods
propose iterative constructions of meta-models based on one (or
several) of these criteria. For example, in [20], a quadratic surface
response is built based, first, on the minimization of the sum of
squared error, then in four different error criteria (Mallows Cp, AIC,
BIC, adjusted coefficient of determination) and finally on leave-
one-out validation. Concerning sensitivity analysis, [4] proposes an
innovative construction of sparse PCE and selects the best PCE
thanks to a corrected leave-one-out error. All these methodologies
are efficient but do not take into account the aim of the meta-
model. Moreover, it is difficult to link a global criterion error to the
error on sensitivity indices computed from the meta-model.
Finally, it is difficult to target a global error criterion value that
allows a level of confidence on sensitivity indices. This problem
also arises in reliability analysis and many authors propose error
measurements and adaptive algorithms based on the probability

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ress

Reliability Engineering and System Safety

0951-8320/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ress.2013.09.011

n Corresponding author at: Institut Clément Ader (ICA), ISAE, F-31055 Toulouse,
France. Tel.: þ33 561339245.

E-mail addresses: sylvain.dubreuil@isae.fr (S. Dubreuil), marc.berveiller@edf.fr
(M. Berveiller), frank.petitjean@icam.fr (F. Petitjean), michel.salaun@isae.fr
(M. Salaün).

Reliability Engineering and System Safety 121 (2014) 263–275

www.sciencedirect.com/science/journal/09518320
www.elsevier.com/locate/ress
http://dx.doi.org/10.1016/j.ress.2013.09.011
http://dx.doi.org/10.1016/j.ress.2013.09.011
http://dx.doi.org/10.1016/j.ress.2013.09.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2013.09.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2013.09.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2013.09.011&domain=pdf
mailto:sylvain.dubreuil@isae.fr
mailto:marc.berveiller@edf.fr
mailto:marc.berveiller@edf.fr
mailto:frank.petitjean@icam.fr
mailto:michel.salaun@isae.fr
mailto:michel.salaun@isae.fr
http://dx.doi.org/10.1016/j.ress.2013.09.011


of failure obtained by meta-models and not only on global meta-
modelling error. For example, in [11], the authors use a complete
quadratic response surface as a meta-model and build confidence
intervals by Jack-knife re-sampling around the design point. In
[16], a bootstrap re-sampling on the failure probability is used to
construct an optimized PCE. Confidence interval constructed by
bootstrap re-sampling is also widely used in global sensitivity
analysis. Plischke et al. [17] use bias-reducing bootstrap on
variance-based and density-based sensitivity indices computed
by sampling. Castaings et al. [5] use bootstrap on density-based
sensitivity indices computed by different sampling strategies. In
the field of sensitivity analysis performed by meta-models, [13]
uses reduced-basis meta-models to estimate variance-based sen-
sitivity indices and combine the property of reduced-basis meta-
model and bootstrap re-sampling to compute confidence intervals.
Storlie et al. [25] compares several types of meta-models and also
uses bootstrap re-sampling on this meta-models to obtain con-
fidence intervals.

This paper proposes to take advantage of the PCE in the
estimation of variance based sensitivity indices. Then, in order to
know if this approximation is accurate enough to estimate partial
variances, a way to construct confidence intervals by bootstrap re-
sampling is presented. In the first part of this paper, some
important features about PCE and the determination of sensitivity
indices are recalled. One important point deals with the method
used to construct the polynomial basis. A quite recent methodol-
ogy based on the Least Angle Regression (LAR) algorithm and
developed in [3] is used. The second part presents an application
of bootstrap re-sampling [10] to the computation of sensitivity
indices, when they are estimated by PCE. Some results about the
determination of confidence intervals are recalled and an algo-
rithm is presented which is set up to build a design of experiments
allowing one to obtain sensitivity indices with a given level of
confidence. Finally, this methodology is tested, first, on academic
cases (Ishigami and g-Sobol' functions) and, second, is used for a
sensitivity analysis on a finite element model of satellite TARANIS,
designed by the Centre National d'Etudes Spatiales (France).

2. Determination of sensitivity indices by polynomial chaos
expansion

2.1. Approximation of a stochastic model by a PCE

Let us consider a numerical model yðXÞ, that depends on a
random vector X¼ fX1;…;Xng of n independent random variables,
defined by the joint probability density function (PDF), say
f XðxÞ ¼∏n

i ¼ 1f Xi
ðxiÞ. It is shown [24] that any second-order random

variable can be expanded into a polynomial decomposition as

yðXÞ ¼ ∑
1

i ¼ 0
CiϕiðX1;…;XnÞ ð1Þ

where fϕigiAN is an adequate orthogonal polynomial basis, with
respect to the joint PDF, and fCigiAN are unknown coefficients. In
practice, decomposition Eq. (1) is truncated to a finite number of
terms, say P, according to

yðXÞ � byðXÞ ¼ ∑
P�1

i ¼ 0
CiϕiðX1;…;XnÞ ¼ ∑

P�1

i ¼ 0
CiϕiðXÞ ð2Þ

This paper only deals with the so called non-intrusive methods
which do not need a modification of the numerical code comput-
ing the output Y. They are simple to implement and do not ask
special form of Y, except that E½Y2�o1.

The next subsections present the construction of a basis ϕi

� �
and the computation of the coefficients Ci.

2.2. Construction of the candidate basis

It is shown in [27] that classical univariate polynomial bases
should be used for usual distributions (see Table 1). Then the
orthogonal multivariate polynomial basis is obtained from the
product of each univariate polynomial. This approach is chosen
because only usual distributions are used. In other cases, the
simplest solution consists in an iso-probabilistic transformation
of the input variables into standard normal ones [14].

The multivariate polynomial basis in Eq. (1) is composed of an
infinity of terms. As seen in Eq. (2), this basis is truncated to a
finite number of terms, say P. In the following, polynomials are
ranked by order (first polynomials are univariate of degree one,
then multivariate using two variables of degree one, then the
univariate at degree two, etc.).

The simplest way to truncate the basis is then to choose the P
first polynomials. For example, the number P of polynomials
necessary to reach a maximal order p is P ¼ ðnþpÞ!=ðn!p!Þ, where
n is the number of random variables. This strategy is efficient for
problems of small dimension and responses that can be approxi-
mated by low degree polynomials. When it is not the case, the
number of terms becomes important and leads to conditioning
problems. Considering this issue, considerable research efforts
were done during the last years to create efficient selection
algorithms, leading to sparse bases in regression area and parti-
cularly in PCE area [2]. They will be detailed in Section 2.3.2.

2.3. Computation of the coefficients

2.3.1. Ordinary least square
Coefficients Ci are determined by minimizing the quadratic

norm of the error ɛy ¼ Y�ΦC, between some exact values yðXÞ
estimated at N different points (experimental design of size N)
concatenated into vector Y, and their estimation by the truncated
polynomial expansion, concatenated into vector ΦC, where C is
the vector of unknown coefficients Ci in Eq. (2) andΦAMN;P is the
matrix of regressors. Column vectors of matrix Φ are evaluations
of polynomials ϕi, iA ½0; P�1�, at the N points of the experimental
design. The least-square minimization criterion leads to

C¼ ðΦtΦÞ�1ΦtY: ð3Þ

2.3.2. LAR
Let us now introduce classical notations for sparse basis. First,

the multi-index is α¼ fα1⋯αi⋯αng, and A is the family of multi-
indices α. From now, polynomial ϕα is the one acting on variables
Xi at power αi, for iA ½1;n�. Its total degree is jαj ¼∑n

i ¼ 1αi. With
such notations, the polynomial chaos expansion of a stochastic
model yðXÞ (see Eq. (2)) reads

yðXÞ � byðXÞ ¼ ∑
αAA

CαϕαðXÞ: ð4Þ

Given a full candidate basis B of maximal degree p, with
p¼maxjαj and cardðBÞ ¼ ðnþpÞ!=ðn!p!Þ, a polynomial chaos expan-
sion is said sparse if cardðAÞocardðBÞ. As the expansion coeffi-
cients are determined by regression, several tools, initially set-up

Table 1
Univariate orthogonal polynomials for usual ran-
dom variables.

Random variable Orthogonal polynomials

Gaussian Hermite
Uniform Legendre
Beta Jacobi
Gamma Laguerre
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