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Statistical estimation of G-renewal process parameters is an important estimation problem, which has
been considered by many authors. We view this problem from the standpoint of a mathematically
ill-posed, inverse problem (the solution is not unique and/or is sensitive to statistical error) and propose a
regularization approach specifically suited to the G-renewal process. Regardless of the estimation method,
the respective objective function usually involves parameters of the underlying life-time distribution and
simultaneously the restoration parameter. In this paper, we propose to regularize the problem by decoupling
the estimation of the aforementioned parameters. Using a simulation study, we show that the resulting
estimation/extrapolation accuracy of the proposed method is considerably higher than that of the existing

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Parameter estimation of the G-renewal process is an important
problem. In this paper, we considered this problem as well as the
problem of the extrapolation accuracy of the G-renewal function
based on restricted (in time) empirical data. This problem often
arises in forecasting of warranty repairs/costs [14,15], mainte-
nance optimization [12,13,18,19] and evaluation of the repair
quality and/or effectiveness [17].

From the standpoint of mathematics, statistical estimation, i.e.,
evaluating model’s parameters based on the data, can be viewed as
an inverse problem. This is in contrast to a forward problem, which
involves evaluating/predicting data points based on the (estimated)
model parameters. Evans and Stark [5] draw some formal parallels
between statistical estimation problems and mathematical inverse
problems. For example, they point out that identifiability (distinct
models yield distinct probability distributions for the observed data)
is similar to uniqueness (the forward operator maps at most one
model into the observed data). Further, consistency (model para-
meters can be estimated with arbitrary accuracy as the number of
data points grow) is related to stability of recovery (small changes in
the data produce small changes in the recovered model).

Abbreviations: CDF, cumulative distribution function; CIF, cumulative intensity
function; GRP, generalized renewal (or G-renewal) process; HPP, homogeneous
Poison process; IFR, increasing failure rate; LSQ, least squares estimation; MC,
Monte Carlo; MLE, maximum likelihood estimation; MTTF, mean time to failure;
NHPP, non-homogeneous Poison process; ORP, ordinary renewal process; PDF,
probability density function; PFF, percent of first failures; RSS, residual sum of
squares; SE, standard error; TTF, time to the first failure
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Most of the inverse problems are considered to be mathemati-
cally incorrect and/or ill-posed. A typical remedy in this case is the
so-called regularization, i.e., the introduction of additional information
in order to solve an ill-posed problem or to prevent model over-
fitting. Bayesian estimation, Ridge regression and Lasso regression are
examples of regularization used in statistical science.

In this paper, we view the problem of estimating parameters of
the G-renewal process as a mathematically ill-posed or incorrect
(ill-conditioned) problem. In order to regularize this problem, we
propose an approach, which is neither Bayesian, nor Ridge/Lasso
regression related. It is based on separating the underlying
distribution parameters from the GRP restoration factor in two
consecutive steps. Using a simulation study, we show that the
resulting extrapolation accuracy of the proposed method is
considerably higher than that of the existing methods.

The paper is structured as follows. In Section II, we overview the
G-renewal process and represent it as an inverse problem. In Section
IIl, we discuss existing estimation methods of the G-renewal
equation parameters and propose a regularization approach along
with the respective estimation procedure. We use a simulation
study to compare the accuracy of the proposed approach relative to
the existing methods. In Section IV, we use a practical case study to
show the efficiency of the proposed method.

2. G-renewal estimation as an inverse problem

Kijima and Sumita [6] introduced the generalized renewal
(G-renewal) process using the notion of virtual age:

Vn = qsru
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Nomenclature
q restoration (or repair effectiveness) factor
e vector of parameters of the underlying life-time

distribution
t time

W(t) G-renewal function denoting the expected cumula-
tive number of events (failures)

flt) probability density function

F(t) cumulative distribution function

2,0 respectively, the scale and the shape parameters of
Weibull distribution

where V,, and S, is the system’s age after and before the n-th
repair, respectively, and q is the restoration (or repair effectiveness)
factor. With g=0, the age of the system after the repair is
“re-set” to zero, which corresponds to the ORP. With g=1, the
system is restored to the “same-as-old” condition, which is the
NHPP. The case of 0<q<1 corresponds to the intermediate
“better-than-old-but-worse-than-new” repair assumption. Finally,
with g > 1, the virtual age is A,, > S,,, so that the repair damages
(ages) the system to a higher degree than it was just before the
respective failure, which corresponds to the “worse-than-old”
repair assumption.

The G-renewal process gained its practical popularity only
after methods for estimating its parameters had become avail-
able. The nonlinear LSQ estimation of the G-renewal process was
first offered by Kaminskiy and Krivtsov [1]. The maximum
likelihood procedures were subsequently discussed by Yafez, et.
al [2] and Mettas and Zhao [3]. The estimation of the G-renewal
restoration factor was addressed in detail by Kahle and Love [4].

Mathematically, estimation of the G-renewal process amounts
to solving the following G-renewal equation with respect to its
parameters, q and 6:

t T
W(t) = / (g(r\0)+/ W(x)g(r—x\x)dx) dr, ¢))
Jo Jo
where
,0 dw
g =tEL D cxz0 wio= T,

and F(t) and f(t) are the cumulative distribution function (CDF)
and probability density function (PDF) of the underlying failure
time distribution (note that g(t|0)=f(t)); q is the restoration
factor, and 0 is the vector of parameters of the underlying
life-time distribution.

It can be shown that this inverse problem is ill-posed or
incorrect. According to Hadamard [7], a well-posed problem is
such for which: (a) a solution exist, (b) the solution is unique, (c)
the solution depends continuously on the data in some reasonable
topology. A correct problem has almost the same definition except
for (c) the solution must be stable (meaning that small statistical
errors in the data should not much influence the solution). The
problem becomes incorrect, if at least one condition in the
definition of a correct problem is violated.

Consider a G-renewal process with arbitrary and infinitely
increasing cumulative intensity function, W(t), corresponding to
some underlying failure-time distribution function, F(t), and the
restoration factor g # 1. In this setting, one can derive another
solution corresponding to g=1: F(t)=1—e~"®, simply because
the cumulative intensity function, W(t), of the NHPP (i.e,
G-renewal process with g=1) is formally equal to the cumulative
hazard, H(t), of the respective underlying failure-time distribu-
tion [9]. This is to say that for a G-renewal process with any value
of g # 1, one can always find a solution in the above form of F(t)
and g=1. Hence, the solution is not unique in general case, and,
therefore, the respective (inverse) problem is ill-posed. In other
words, any CIF can be theoretically modeled by the NHPP, but it is
not a unique presentation of the solution and, in a practical

setting, may be not a correct reflection of the underlying physical
process (for example, if we know apriori that the system is “better
than old” after the restoration). With the proposed regularization
approach, we can expect a more accurate estimation of GRP
parameters (including the restoration factor, gq), which, in turn,
provides a better extrapolation accuracy of the CIF.

Even the ordinary renewal process (q=0) can be shown as an
ill-posed (or ill-conditioned) reverse problem. Recall that the
ordinary renewal equation involves a convolution integral (which,
of course, is also present in Eq. 1):

t
W(t) = F(t)+ /0 F(t—7) dW(T) 2)

Hence, the respective inverse problem can be considered as a
deconvolution problem, which is typically ill-conditioned. Its
solution is not stable with respect to the calculation error
and/or empirical noise [10,11]. Moreover, as time tends to
infinity, W(t) becomes linear, and infinite number of underlying
F(t) can produce the same (linear) behavior of W(t). Conversely, if
time tends to zero, the CIF does not depend on restoration factor
and approximates the underlying CDF.

The inverse (estimation) problem becomes even more compli-
cated for the G-renewal process, because, in addition to the
parameters of the underlying life-time distribution, one has to
also deal with the restoration parameter. When discussing the
estimation of the G-renewal process with the underlying Weibull
distribution in [8], we noticed that two “competing” vectors
of significantly different GRP parameters yielded practically
indistinguishable values of the CIF at various time cross-sections.

As an illustration, let us choose the class of Weibull distribu-
tion functions,F(t) = 1—exp(—At)*, with scale parameter, A, and
shape parameter, o as the underlying failure-time distribution
of the G-renewal process. Now, consider Fig. 1, where we show
three CIF's simulated (under n=107 trials) with three sets of the
underlying parameters: Case 1: {1;=1.0, ;=2.0, g;=0}, Case 2:
{72=0.949, 0,=1.675, q,=0}, Case 3: {13=0.949, 03=1.675,
q3=0.1}. Cases 2 and 3 can be considered as empirical data
fluctuating close to the exact solution (Case 1).

Note that with as much as 20% difference in the Weibull shape
parameter between Cases 1 and 2, the maximum difference in the
respective values of the CIF is around 4% (at t=1.214). Moreover,
even though all cases presented in Fig. 1 can be considered as
good approximations (interpolations) in interval,0 <W(t)<1,
they have significantly different GRP parameters and, as a
consequence, yield significantly different extrapolations of the
G-renewal function, as shown in Fig. 2. This indicates that even in
the class of Weibull distribution functions, the inverse problem is
ill-conditioned.

There are many developed general methods for regularization
of inverse problems [10], however all of them require significant
amount of additional calculations, because typically another
optimization parameter (e.g., a Lagrange multiplier) is introduced
in the problem. These methods are efficient in the case when
corresponding forward problem is easy to solve. In our case, the
forward problem is described by integral Eq. (1), which does not
have a closed form solution.
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