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a b s t r a c t

A challenging aspect of dynamic methodologies for probabilistic risk assessment (PRA), such as the

Dynamic Event Tree (DET) methodology, is the large number of scenarios generated for a single

initiating event. Such large amounts of information can be difficult to organize for extracting useful

information. Furthermore, it is not often sufficient to merely calculate a quantitative value for the risk

and its associated uncertainties. The development of risk insights that can increase system safety and

improve system performance requires the interpretation of scenario evolutions and the principal

characteristics of the events that contribute to the risk. For a given scenario dataset, it can be useful to

identify the scenarios that have similar behaviors (i.e., identify the most evident classes), and decide for

each event sequence, to which class it belongs (i.e., classification). It is shown how it is possible to

accomplish these two objectives using the Mean-Shift Methodology (MSM). The MSM is a kernel-based,

non-parametric density estimation technique that is used to find the modes of an unknown data

distribution. The algorithm developed finds the modes of the data distribution in the state space

corresponding to regions with highest data density as well as grouping the scenarios generated into

clusters based on scenario temporal similarities. The MSM is illustrated using the data generated by a

DET algorithm for the analysis of a simple level/temperature controller and reactor vessel auxiliary

cooling system.

Published by Elsevier Ltd.

1. Introduction

Dynamic methodologies for probabilistic risk assessment (PRA)
are those that account for possible coupling between triggered or
stochastic events through explicit consideration of the time ele-
ment in the system evolution. They are usually needed when the
system has more than one failure mode, control loops, and/or
hardware/process/software/human interaction [1]. Dynamic
methodologies are also capable of modeling the impacts of both
the epistemic1 and aleatory2 uncertainties on the system figure-
of-merit within a phenomenologically consistent framework.

Dynamic PRA methods include Dynamic Logical Analytical
Methodology (DYLAM) [2], Dynamic Event Tree Analysis Method
(DETAM) [3], ADS [4], ADAPT [5], Sequence Diagrams (ESDs) [6],
Petri Nets [7], Dynamic Flowgraph Methodology (DFM) [8],
Discrete Dynamic Event Trees (DDETs) [9], Markov/Cell-to-Cell
Mapping Technique [10] and Monte Carlo Dynamic Event Tree
(MCDET) [11]. The list is not exhaustive and only provides some

samples of dynamic PRA methods. A more comprehensive dis-
cussion of dynamic methods is given in [1].

The DYLAM, DETAM, ADS and ADAPT are among methodologies
that use dynamic event trees (DETs) to account for aleatory
uncertainties. ADAPT can also account for epistemic uncertainties
within the DET framework. A DET is an expansion on traditional
static event trees (ETs), and seeks to incorporate timing and process
relationships into the stochastic system model. Static ETs have a
fixed and predetermined event sequence defined by the analyst,
determined after a series of review processes and thermal hydraulic
calculations. Fig. 1 shows a simplified ET for a large break loss of
cooling accident (LOCA). In order to reach a safe state of the plant,
the reactor protection system trips the reactor and performs the
cooling of the reactor through the emergency cooling system (ECCS).
A failure in any of these two systems will cause core damage (CD).

The DETs are generated by the direct coupling between the
dynamic model of the plant and the stochastic behavior of system
components (including software/firmware) and human actions. The
branching conditions in a DET are generated by user specified rules,
such as activation/non-activation upon demand of components,
correct/faulty crew action depending on specific plant conditions
or when state variables reach predefined setpoints during the
simulation. Process and modeling uncertainties (which can affect
the ordering of the events [5]) are also taken into account in terms
of branching conditions. The dynamic model of the plant is built
using system analysis codes (e.g., RELAP [12] or MELCOR [13])
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which evaluate its temporal behavior and determine the timing and
nature of each branch. Subsequently, the use of DETs allows a more
systematic and mechanistic search of the uncertainty space and also
allows consideration of both the epistemic and aleatory uncertain-
ties in a consistent phenomenological framework.

The major challenges in using DETs (as well as other dynamic
methodologies) are the heavier computational and memory require-
ments compared to the classical ET analysis. This is due to the fact
that each branch generated can contain time evolutions of a large
number of variables (about 50,000 variables (or data channels) are
present in MELCOR) and thus a much larger number of scenarios can
be generated (on the order of several thousands) compared to the
traditional ET/fault-tree (FT) approach. Such large amounts of
information are very difficult to organize and interpret in regard
to the main trends in scenario evolutions and the main risk
contributors for each initiating event [14]. A solution to this problem
is to partition the set of scenarios into groups, called clusters, and
analyze each group individually rather than all the scenarios
simultaneously. The partition is performed by identifying simila-
rities among scenarios and grouping them according to a predefined
similarity criteria. Once the partition is obtained, the user can
analyze each group and identify differences among groups.

When dealing with nuclear transients, it is possible to analyze
the set of scenarios in two modes:

� End State Analysis classifies the scenarios into clusters based on
the end state of the scenarios.
� Transient Analysis classifies the scenarios into clusters based on

time evolution of the scenarios.

While the first mode has been widely used in the classic fault
tree/event tree analysis [15], the second one is starting to be
considered in the recent years [16]. From a safety point of view,
for example, it might be useful to group scenarios based on their
temporal behavior and identify how sequence and timing of
events affect the overall system dynamics other than focusing
only on the end result of the simulation.

This paper presents a scenario clustering algorithm which can
simplify the organization and analysis of the large dataset
generated by a DET. By scenario clustering we mean two actions:

1. Identify the scenarios that have a similar behavior (i.e., identify
the most evident clusters).

2. Associate each scenario with a unique cluster.

When clusters are determined, the user can then identify simila-
rities among the scenarios in each cluster (e.g., timing and
sequence of events) and compare them among different clusters.

For example, clustering applied to dynamic PRA helps the user to
understand how small changes in sequence/timing of events
impact the overall system dynamics (see Section 4.3). A metric
of success is, thus, the ability to determine a set of clusters that
can help the user to identify such effects.

In Sections 2 and 3, the notions of clustering and classification
are introduced along with the need and the approach to pre-
processing of the raw data. In Section 4, we introduce the MSM
using the dataset generated by DET for the level controller presented
in [17] as an example (Section 4.2). In Section 4.3, we apply the
Mean Shift Methodology (MSM) to the reactor vessel auxiliary
cooling system (RVACS) of a conceptual design for a sodium-
cooled fast reactor. Section 5 presents the conclusions of the study.

2. Clustering: an overview

Clustering is the process of organizing objects into groups
whose members are in some way similar. A cluster is therefore a
collection of objects which are similar to each other and are
dissimilar to the objects belonging to the other clusters [18].

Fig. 2 shows an elementary example of partitional clustering
[19] applied to a two-dimensional data. Here, we easily identify
the 3 clusters into which the data can be divided. The similarity
criterion is the distance measure: two or more objects belong to
the same cluster if they are ‘‘close’’ according to a specified
distance measure. The approach of using distance metrics to
clustering is called distance-based clustering and will be used in
this work by employing the Euclidean distance as a measure of
the similarity between two D-dimensional data points xi
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represents a scenario in the D-dimensional
space of the data channels or variables of interest.

More formally, the concept of clustering [18] that we aim is to
find a partition C¼ fC1, . . . ,Cl, . . . ,CLg of the set of I scenarios
X¼ fx1
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Clustering algorithms can be divided into two classes [18]:

� Hierarchical algorithms
� Partitional algorithms

Fig. 1. Example of an event tree.

Fig. 2. Example of clustering process.
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