Accepted Manuscript Prediction of friction coefficients in nanoscratch testing of metals based on material flow lines Hamid R. Chamani, Majid R. Ayatollahi PII: S0167-8442(17)30547-5 DOI: https://doi.org/10.1016/j.tafmec.2018.02.004 Reference: TAFMEC 1997 To appear in: Theoretical and Applied Fracture Mechanics Received Date: 29 November 2017 Revised Date: 25 December 2017 Accepted Date: 7 February 2018 Please cite this article as: H.R. Chamani, M.R. Ayatollahi, Prediction of friction coefficients in nanoscratch testing of metals based on material flow lines, *Theoretical and Applied Fracture Mechanics* (2018), doi: https://doi.org/10.1016/j.tafmec.2018.02.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ## ACCEPTED MANUSCRIPT Prediction of friction coefficients in nanoscratch testing of metals based on material flow lines Hamid R. Chamani, Majid R. Ayatollahi* Fatigue and Fracture Lab., Center of Excellence in Experimental Solid Mechanic and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Narmak, 16846, Tehran, Iran. Abstract In nanoscratch experiments, the frictional shear force vector applying on each element of the contact surface between the nanoindenter and material is in the direction of material flow lines or relative displacement vectors. In this paper, the material flow lines in the nanoscratch test around the Berkovich nanoindenter in the face-forward orientation are investigated. The finite element simulation of nanoscratch test is conducted to calculate and track the trajectory of the material points located on the material surface. The material flow lines around the nanoindenter are qualitatively and quantitatively explained and a new method entitled focal point method is proposed to describe the material flow lines in the contact surface. The evolution of the material flow lines in terms of the material properties and local friction coefficient is studied. The adhesive friction coefficient is calculated using the pattern of flow lines obtained by the focal point method. There is a close agreement between the predicted friction coefficients and those obtained from the finite element simulation and experiment, so that the error percent is about 5.7%. **Key words:** Nanoscratch; Material flow line; Berkovich nanoindenter; Friction coefficients *Corresponding author. Tel.: +98 21 77240201; fax: +98 21 77240488. E-mail address: m.ayat@iust.ac.ir (M.R. Ayatollahi). 1 ## Download English Version: ## https://daneshyari.com/en/article/7196213 Download Persian Version: https://daneshyari.com/article/7196213 <u>Daneshyari.com</u>