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A B S T R A C T

The displacement discontinuity boundary integral equation method is extended to analyze planar cracks of
arbitrary shape embedded in a three-dimensional, transversely isotropic, thermoporoelastic medium. Based on
the general solutions and Hankel transform technique, the fundamental solutions for unit-point, extended dis-
placement discontinuities (including the displacement discontinuities, pore pressure discontinuity, and the
temperature discontinuity) are derived. The extended displacement discontinuity boundary integral equations
are established for an arbitrarily shaped, planar crack in the isotropic plane of the thermoporoelastic medium in
terms of the extended displacement discontinuities. Using the boundary integral equations method, the singu-
larities of near-crack front fields are analyzed, and the stress, fluid flux and heat flux intensity factors are derived
in terms of the extended displacement discontinuities. To validate the analytical solution, the EDD boundary
element method is proposed. The numerical simulation of a penny-shaped crack under combined uniform me-
chanical-pore pressure–thermal loadings is compared with the analytical solution to validate the correctness of
the proposed method. As an application, two coplanar elliptical cracks are numerically simulated. The influences
of the applied, combined mechanical-pore-pressure-thermal loadings, the crack distance, the ellipticity ratio as
well as the size of cracks are all studied.

1. Introduction

Due to their specific features of high acoustic and thermal insula-
tion, specific surface area and excellent penetrability, porous materials
have become one of the fastest-growing materials in the modern en-
gineering application, and they have been widely used in foodstuff,
chemical industry, architectural engineering and energy industry and
so on. There commonly exist defects such as cracks, inclusions and
cones in the manufacturing and production of this material, it is es-
sential to understand the fracture mechanisms and set up the corre-
sponding fracture criteria.

Biot [1] originally set up the consolidation model based on elastic
theory and fundamental equations of porous media and proposed a
general theory of three-dimensional consolidation. Following that, Biot
[2] established the equations of elasticity and consolidation for a
porous elastic material containing a fluid. To take the temperature ef-
fect into consideration for engineering applications like heat supply
pipeline, nuclear storage facilities and deep drilling, the thermo-
poroelasticity model was founded [3,4]. Based on the basic relations,

many researchers derived the Green’s functions for transversely iso-
tropic, poroelastic materials. Taguchi and Jurashige [5] presented the
Green’s functions for an infinite, fluid-saturated, transversely isotropic,
poroelastic material by virtue of the Kupradze’s method combined with
the triple Fourier transforms and Hankel transforms. Li et al. [6] ob-
tained the steady-state general solution for transversely isotropic,
thermoporoelastic media using the potential function method. Fur-
thermore, Hou et al. [7] derived the Green’s functions for 3D, trans-
versely isotropic thermoporoelastic bi-materials. Later on, Lu et al. [8]
analyzed a thermoporoelastic beam by utilizing the general solution of
thermoporoelasticity and the Lur’e method. Wu et al. [9] analyzed the
steady-state deformation of axisymmetric, transversely isotropic, ther-
moporoelastic circular cylinders. Kumar et al. [10,11] studied the de-
formation of a half space with incompressible fluid as a result of in-
clined load of arbitrary orientation and the response of
thermomechanical sources in a thermoporoelastic medium, respec-
tively. Wu et al. [12] gave the Green’s functions for axisymmetric cones
under the action of point fluid source and heat source in thermo-
poroelastic media.
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As the crack problem is a hotspot in thermoporoelasticity, many
researches have been conducted. Atkinson and Craster [13] studied the
plain strain fracture problems of poroelasticity. Gordeyev [14] analyzed
a disk-shaped crack in a transversely isotropic, fluid-saturated, por-
oelastic material. Adelaide et al. [15] gave the analytical solution of
hydrostatic-elastic problem considering the interaction of wetting fluid
with a penny-shaped circular crack. Li et al. [16] analyzed a penny-
shaped crack under combined thermo-poro-mechanical loads in a
thermoporoelastic body on the basis of potential function method and
the general solutions [6]. It can be concluded that most of the previous
literature was limited to two-dimensional (2D) crack problems or some
3D cracks of certain shapes under uniformly distributed loadings.
However, the crack usually displays various shapes and the applied
loads are also complicated. Therefore, it is necessary to propose an
analysis method for an arbitrarily shaped crack under different kinds of
combined loading in thermoporoelastic media.

There are many methods proposed to deal with crack problems in
porous media, such as finite difference method, finite element method,
discrete element method, and finite volume method, etc. In addition,
Sladek et al. [17] employed the scaled boundary-finite element method
(SBFEM) to analyze cracks in porous piezoelectric solids. Goudarzi and
Mohammadi [18] used the extrinsically enriched Element-free Galerkin
(EFG) approach to analyze cohesive cracking in saturated porous
media. Yan and Zheng [19] utilized a combined finite-discrete element
method (FDEM) to study hydraulic fracture in porous media. Phurkhao
used the numerical Laplace inversion technique to investigate the dy-
namic stress intensity factors of an in-plane shear crack in saturated
porous medium [20] and then extended it to analyze the transient re-
sponse of a saturated porous cylinder containing a penny-shaped crack
subjected to a suddenly applied normal loading [21]. Comparing with
the methods mentioned above, the boundary element method distin-
guishes itself as a boundary method, namely, the numerical dis-
cretization is conducted at reduced spatial dimension [22]. The dis-
placement discontinuity method (DDM) proposed by Crouch [23] treats
the crack as one surface so that the discretization is required on only
one side of the crack. This method was initially intended to investigate
2D elastic crack problems. Later on, researchers found this method
widely applicable and efficient in analyzing crack problems in other
materials. Later on, this method was extended to study 3D, elastic
media [24,25], piezoelectric media [26], magnetoelectroelastic media
[27], and thermoelastic media [28], where the original elastic dis-
placement discontinuities were extended to include the temperature,
electric potential, and magnetic potential discontinuities across crack
faces.

Due to the existence of cracks, the pore pressure and temperature
distribution across crack faces are discontinuous for thermoporoelastic
media. Motivated by this, this paper develops the extended displace-
ment discontinuity, boundary hyper-singular integral equation method
to analyze an arbitrarily shaped, planar crack in 3D, transversely iso-
tropic thermoporoelastic media. The paper is organized as follows:
Section 2 lists the basic equations, and the fundamental solutions for
unit-point EDDs are obtained in Section 3. The boundary hyper-singular
integral equations for arbitrarily shaped, planar cracks are established
in Section 4. In Section 5, the singular behavior near the crack front is
analyzed, and the extended field intensity factors are obtained in terms
of the EDDs. In Section 6, the numerical method for two coplanar el-
liptical cracks is proposed and the algebraic equations are presented. In
Section 7, the correctness of the numerical method is verified, and the
extended stress intensity factors are illustrated at various crack dis-
tance, the ellipticity ratio as well as the size of the cracks. At last,
conclusions are drawn in Section 8.

2. Basic equations

The constitutive relations for transversely isotropic thermo-
poroelastic media, referred to the Cartesian coordinates (x,y,z) with xoy

coincident with the isotropic plane and the z-axis identical to the axis of
rotational material symmetry, can be expressed as [3,4]
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where u, v, and w are displacements and σij is stress; P and θ are changes
of the pore pressure and temperature, respectively; P = 0 and =θ 0
correspond to the free stress state; ζ is the variation of fluid content; cij,
α1 (α3,M) and β1 (β3,βm) are elastic moduli, Biot’s effective stress
coefficients and thermal constants, respectively, where we have a re-
ciprocal relation 2c66 = c11–c12.

Fluid flow and heat conduction in porous media follow the Darcy
law [29] and Fourier law, respectively
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where qx, qy and qz are the fluid fluxes; hx, hy and hz are the heat fluxes;
κ11(κ33) and λ11(λ33) are coefficients of permeability and thermal con-
ductivity, respectively.

According to Li et al. [6], the thermoporoelastic loadings are as-
sumed to vary slowly with the rates of fluid mass content and entropy
vanishing. Accordingly, in a steady-state case, the pore pressure and
temperature fields remain constant and are governed, respectively, by
the following two Laplace equations
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It is noted that the one-way coupling theory for thermoporoelastic
media is adopted in the paper, which means that, the pore pressure and
thermal loadings influence the elastic fields, while the mechanical
loadings have no impact on the thermal and hydraulic fields. In addi-
tion, the thermal and hydraulic fields are independent and do not in-
terfere with each other.

In the absence of body forces, the mechanical equilibrium equations
can be expressed as
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3. Fundamental solutions for unit point EDDs

Assuming a penny-shaped crack with radius a centered at the origin
of the coordinate system is oriented in the isotropic plane xoy per-
pendicular to the rotational material symmetry direction, as shown in
Fig. 1. The upper and lower surfaces of the crack are denoted by S+ and
S−, respectively, and

= =x r ϕ y r ϕcos , sin . (4)

The extended displacements across the crack faces are dis-
continuous, and the extended displacement discontinuities (EDDs) can
be expressed as
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