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In this paper, a general approach is developed for evaluating the transverse displacements in an angular sector.
The problem is investigated within the first order plate theory, which can be considered as an elementary
extension of the classical plane theories of elasticity. Based on this approach, a new analytical solution for a
semi-infinite crack subjected to mode I loading is obtained and this solution is verified against previous three-
dimensional Finite Element studies. This approach can also be useful in the analysis of other problems, which

can be reduced to a modified Helmholtz (or Yukawa) equation in an angular sector.

1. Introduction

The simplest analytical theory, which is capable to evaluate the
three-dimensional stress and displacement fields in plane problems of
elasticity is the first order plate theory suggested by Kane and Mindlin
in 1956. This theory was originally applied to the analysis of high-
frequency extensional vibrations in moderately thick plates [1]. It is
based on a kinematic assumption that the in-plane displacement com-
ponents remain constant through the plate thickness and the transverse
(out-of-plane) displacement component varies linearly across the plate
thickness. For example, the displacement field in an elastic plate
bounded by planes z= +h is defined as [2]

U= (g up=up(nd) U= wlr) o

where r and ¢ are the in-plane coordinates and z is the distance from
the mid-plane (Fig. 1). Due to the underlying kinematic assumption, the
first order plate theory cannot capture certain 3D effects, such as the 3D
corner or vertex singularity, which dominates at distances of approxi-
mately 0.1h from the vertex [17,18]. However, the kinematic as-
sumption allows the theory to retain the simplicity of a 2D formulation
for the analysis of 3D plane problems.

The stress resultants of the first order plate theory are defined as [2]:
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Due to the kinematic assumption (1), the in-plane stress resultants
{Nr,Ngg,Nys} are simply equal to the average through-the-thickness in-
plane stress component, {o;y,044,0r4}, multiplied by the plate thickness, 2h.
The stress resultants, N;, and Ny, are the components of pinching shear.
The latter play a role in extensional deformations similar to the trans-
verse shearing forces in flexure.

If the mean in-plane stress resultant is denoted by N= (N;; + Ngg)/2,
then the equilibrium equations of the first order plane theory result into
the following relationship between the out-of-plane displacement
function, w(r,$) and the mean in-plane stress resultant, N(r,¢), see, for
instance, Eq. (6a) in Yang and Freund [2]:
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Here V2 is the Laplace operator, h is the half plate thickness, u and A are
Lame constants. The governing equation (1) can also be rewritten in
terms of Young’s modulus, E and Poisson’s ratio, v as
vh*¢?
E

Viw—x2 w= N, ¥ = %(1 +v).

“@
Eq. (4) is coupled with three other governing equations of the first order
plate theory: two equilibrium equations for the in-plane stress re-
sultants, Nggg =0, o, =r1,¢, and the strain compatibility equation,
V2(N—Evw/(1 + v)?) = 0. This coupling of four partial differential
equations makes the analysis of non-trivial problems difficult.

In order to simplify the problem formulation, the present work as-
sumes
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Fig. 1. Coordinate system and problem geometry.

7(Nrr + N¢¢) ~ g'rr + g¢¢,

2h (5)
where the stress components grr and gcbd: are the known solution of the
corresponding 2D plane stress problem. Indeed, analytical, numerical
and experimental studies of plane problems of elasticity over the past
hundred years arrived at two main conclusions: firstly, the classical
plane stress solutions describe accurately the in-plane stress compo-
nents of the actual three-dimensional stress state, and secondly, the
variation of the in-plane stress components across the plate thickness is
small and can be neglected for all practical purposes. These funda-
mental conclusions, in particular, justify the use of various solutions of
the plane theory of elasticity for stress analysis and design of plate
components across many industries and applications.

The simplified governing equation for w(r,), which is now un-
coupled from the other governing equations of the first order plate
theory, can be written as:

vh

K2V .V
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(6)

where the sum of in-plane normal stress components (grr + XM,) is as-
sumed to be a known function of the in-plane coordinates.

2. The approach

i .
Because gn and oy, represent the plane stress solution of the cor-
responding two-dimensional problem, for which

V(S + Ggg) = V2(V2D) = V40 = 0, @

where @ is the classical Airy stress function (bi-harmonic function), the
solution of the governing equation (6) can be written as

vh v v
W= W, + Wp, W, =——(C + G,
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In (8), w, represents the particular solution for the out-of-plane dis-
placement corresponding to the plane stress solution. The function wy
corresponds to the solution of the homogeneous modified Helmholtz
equation:

VZWh—KANh =0. (9)

One must find such a homogenous solution wy,, which ensures that:

1. the transverse displacement, w(r,$), is finite everywhere, even at
points where the particular solution, w,, is singular (for e.g. at the
crack tip), and

2. the traction-free boundary conditions must be satisfied along free
edges (for e.g. crack faces).

In addition, the out-of-plane displacement function, wy, has to decay
with the distance from the edges, so the solution (8) converges to the
plane stress solutions in the interior domain. The decaying solution of
equation (9) describes a boundary layer effect [2] of characteristic
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length: ¥~! ~ h.

To demonstrate how the approach works, the problem of a semi-
infinite crack in an elastic plate stressed in mode I and II is considered
in more detail. From the plane stress solution of this problem, the sum
of normal in-plane stresses is

Vv Vv 2K
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where the origin of the cylindrical polar coordinate system lies at the
tip of the crack, ¢ = +m coincide with the crack faces and K; and Kj; are
the remotely applied mode I and II stress intensity factors, respectively.
The out-of-plane displacement corresponding to the plane stress solu-
tion is simply

vh |2 ¢
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It is readily observed that the particular solutions for both modes
are wholly analogous and are singular at r= 0, with asymptotic beha-
viour of r™'/2, To ensure the finiteness of the general solution, a
homogenous solution, say wy;, which has the same asymptotic beha-
viour as w, close to r= 0 but the opposite sign, must be obtained. One
such solution admitted by the homogenous modified Helmholtz equa-
tion V2w—x? w= 0 is

vh 2% ¢
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where K;/,(xr) is the modified Bessel function of second kind. The above
expression can also be re-written as

h |2
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Adding the two solutions yields an intermediate solution to the non-
homogenous differential equation (6), w, = w, + Wy, such that

W, = KIﬂ 2 (e”“—l)cos2 (Mode I),
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These solution, as expected, converges to the plane stress solution at the
distance x r> 1 from the crack tip.

It must now be verified whether the intermediate solution w, sa-
tisfies the traction free boundary condition along the crack faces, i.e.
along ¢ = +7. The three traction components acting on these faces are:
Ny¢, Nig and Ng,. The in-plane stress resultants satisfy this requirement.
The requirement of Ny, = 0 can be written as w/d$ = 0. For the two
modes of loading, the latter derivative can be found as

oW, vh K _ oW,
=—-— (e™—1) (ModeI), -
a¢ b=+7 E \/ﬁ a¢ b=+m
=0 (ModeII). (15)

It becomes apparent that the intermediate solution w, only satisfies the
traction-free boundary condition at the free edges of the plate i.e.
¢ = +m for the case of Mode II loading.

The obtained solution for Mode II loading agrees very well with
both experimental observations, [3,4] and outcomes of careful 3D Fi-
nite Element studies e.g. [5-8], with more details found in [9].
Therefore, the derived governing equation agrees well with works of
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