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a b s t r a c t

In the present work, a coupled finite element (FE) and element free Galerkin (EFG) approach has been
proposed for the simulation of two-dimensional stable crack growth problems. In the coupled approach,
EFGM has been used in a region near to the crack whereas FEM is utilized in the rest of the region to
exploit the advantages of both the methods. In the coupled approach, a ramp function has been used
in the transition region to obtain the resultant shape functions. Three problems i.e. crack growth in com-
pact tension specimen, crack growth in triple point bend specimen and crack growth in bi-metallic triple
point bend specimen are solved using J–R curve under plane stress condition to demonstrate the effec-
tiveness of the proposed approach in crack growth problems. These simulations show that the results
obtained by coupled approach are in good agreement with the literature results.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In ductile materials, a significant amount of crack growth occurs
prior to failure. Therefore, numerical simulation of the stable crack
growth in ductile materials is needed to ensure the maximum util-
ity of the material. The theory of linear elastic fracture mechanics
(LEFM) has been widely used by many researchers to investigate
structural component reliability and life expectancy. However,
the validity of LEFM is limited to brittle materials. The concept of
LEFM does not remain valid for ductile materials undergoing large
plastic deformations. A typical ductile fracture involves the follow-
ing processes: (i) crack initiation; (ii) stable crack growth; and (iii)
instability. The theory of elastic–plastic fracture mechanics is used
to characterize the plastic behavior of a material. Many criteria
have been proposed in the past to characterize failure of ductile
materials, for example, the CTOD [1,2], the J-integral [3,4], the tear-
ing modulus [5] and strain energy approach [6]. Morrison and
Karisallen [7] presented a comparison of CTOD and J formulation
for triple point bend specimens, and found a good agreement be-
tween the two criterions. Amstutz et al. [8] proposed that the
CTOD/CTOA values remains constant except at the initial stage of
crack growth for thin 2024-T3 aluminum specimens. Newman
et al. [1] investigated that the crack tip opening angle (CTOA) re-
mains constant behind the crack tip during the stable crack
growth. Lam et al. [2] found that the initial values of CTOD/CTOA

are high due to the transition from crack blunting to stable crack
growth, and remains constant for further stable crack growth.

Over the years, several numerical methods have been devel-
oped to simulate the problems of fracture mechanics such as the
boundary element method [9], the finite element method [10],
meshfree methods [11] and the extended finite element method
[12,13]. The modeling of crack propagation is very difficult in stan-
dard finite element due to the necessity of conformal mesh. XFEM
is one of the most widely used numerical techniques to solve crack
propagation problems. In XFEM, conformal meshing is not re-
quired, but element distortion issue cannot be avoided in case of
large deformation problems. Keeping these issues in mind, mesh-
free methods would be the ideal choice for crack growth modeling
involving large deformation since these methods require only no-
dal data for the domain discretization.

In last two decades, a class of meshfree methods such as the
smooth particle hydrodynamics [14], the diffuse element method
[15], the element free Galerkin method [11], the meshfree local
Petrov–Galerkin method [16] and the reproducing kernel particle
method [17] has been developed to simulate the moving domain
problems. The fundamental of all meshfree methods is the require-
ment of a scattered set of nodal points for the domain discretiza-
tion. Among all these meshfree methods, element free Galerkin
method (EFGM) has been widely used for fracture mechanics prob-
lems due to its simplicity. In 1994, Belytschko and his coworkers
[18] used EFGM for the modeling of static crack growth problems.
In EFGM, the shape functions are constructed by the moving least
square approximation scheme [19]. Since, these shape functions do
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not satisfy the Kronecker delta property, hence the essential
boundary conditions cannot be imposed directly. To overcome this
problem, several techniques have been proposed such as Lagrange
multiplier method [11], modified variational principle [20] and
coupling of FE–EFG [21]. In 1997, Mukherjee and Mukherjee [22]
proposed a technique, based on discrete norm, to palliate the prob-
lem of imposition of essential boundary conditions in EFGM.

Till date, the most of the developments in the EFGM were fo-
cused mainly in the areas of fracture mechanics [23,24], vibration
[25], metal forming [26] and heat transfer [27]. In 2001, Li and
Belytschko [28] used the total Lagrangian EFGM formulation for
the analysis of contact problems in metal forming. Xin et al. [29]
investigated the effectiveness of the EFGM by comparing the re-
sults of extrusion process with those obtained using commercial
software. Later on, a lot of research work has been carried out using
EFGM [30,31] to analyze the three-dimensional linear-elastic frac-
ture mechanics problems but the EFGM has got inferior computa-
tional efficiency as compared to FEM and XFEM. Although, the
some burden of computational cost is being alleviated with the
advancement in computer technologies but it still remains a chal-
lenging task for large scale problems. Few approaches have been
developed to overcome this problem. One approach is the coupling
of EFGM with standard FEM. In this approach, the EFGM has been
implemented in the part of the domain while the rest of the do-
main is modeled with FEM.

Many investigators used different techniques to couple mesh-
free (EFGM) with FEM. Krongauz and Belytschko [21] used a string
of finite elements along the essential boundaries. The combined
shape functions are constructed for the transition region, and
essential boundary conditions are applied directly at the finite ele-
ment nodes. Hegen [32] employed Lagrange multipliers to connect
the meshfree and finite element regions. Karutz et al. [33] pre-
sented the concept for an adaptive coupling of the finite element
and element free Galerkin meshing. Although, few studies were
performed on elastic problems using coupled FE–EFG approach
but the study of elasto-plastic crack growth problems with large
deformation has not been performed so far. Therefore, in the pres-
ent work, an adaptive coupled FE–EFG approach has been used to
simulate the nonlinear behavior of materials. Geometric nonlinear-
ity due to large deformation is modeled using the updated
Lagrangian approach. Standard Newton–Raphson technique is
used for the solution of nonlinear equations. To improve the accu-
racy and reduce the computational time, EFGM has been used only
in a region near the crack, while FEM has been used away from the
crack. A ramp function is employed in the transition regions to ob-
tain the resultant shape functions, which comprises both FE and
EFG shape functions. The ramp function varies linearly from FE
boundary to EFG boundary. Elastic-predictor and plastic-corrector
algorithm [34] has been employed for stress computation.
Von-Mises yield criterion [35] with isotropic hardening has been

Nomenclature

aJ degrees of freedom associated with Heaviside functions
a(x) vector of unknown coefficients
b body force per unit volume
ba

K degrees of freedom associated with asymptotic func-
tions

B matrix of shape functions gradients
dmax scaling parameter
dmI domain of influence
Dep elasto-plastic constitutive matrix
Eij Green–Lagrange strain
f yield functioneG shear modulus
G matrix of derivatives of shape functions
H(x) Heaviside function
I identity matrix
Jcr critical J-integral
k hardening parameter
Kmat material tangent stiffness matrix
Kgeo geometric stiffness matrix
KT total tangent stiffness matrix
m order of basis function
Mr matrix of Cauchy stress components
�n hardening exponent in Ramberg–Osgood model
N matrix of standard finite elements shape functions
N matrix of transition elements shape functions
pT(x) vector of basis functions
Q plastic potential function
r radial distance from the crack tip
R(x) ramp function
Sij second Piolo–Kirchhoff stress
u displacement vector
uI nodal parameter associated with node I at xI

w(r) weight function
W strain energy density
eij strain tensor
ee

ij elastic strain tensor

ep
ij plastic strain tensor

r Cauchy stress tensor
r0

y initial yield stress
r0ij deviatoric stress tensor
rkk hydrostatic stress
~k Lagrange multiplier
dk plastic multiplier
m Poisson’s ratio
dij Kronecker delta
h polar angle with respect to crack tip
�a material parameter in Ramberg–Osgood model
ba(x) crack tip asymptotic functions
v(x) level set function
X total domain
XFE finite element sub-domain
XEFG element free Galerkin sub-domain
XTE transition sub-domain
U matrix of element free Galerkin shape functions
�U matrix of shape functions
Cu prescribed displacement boundary

Abbreviations
CMOD crack mouth opening displacement
CT compact tension
CTOA crack tip opening angle
CTOD crack tip opening displacement
EFGM element free Galerkin method
EPFM elasto-plastic fracture mechanics
FEM finite element method
LEFM linear elastic fracture mechanics
MLS moving least square
PU partition of unity
TPB triple point bend
XFEM extended finite element method
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