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By the Lyapunov direct method, dynamic stability of two conservative systems of finite degrees of
freedom  with  one  parameter  is  analyzed.  Two  Lyapunov  functions  are  proposed  for  the  two
systems, respectively. When the number of degree of freedom the two systems tends to infinite, the
two systems can simulate dynamic stability of a compressed elastic column with one end fixed and
the other clamped in rotation. In the sense of  the Lyapunov stability,  the column is proved to be
dynamically stable when the load equals to the Euler critical load.

©2018 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1     Introduction

Dynamic  stability  of  a  compressed  elastic  column  is  a  key
problem in structure analysis. The problem has received consid-
erable attention in early years, for examples, Woinowsky-Krieger
[1],  Brown et al.  [2],  Dickey [3],  Reiss and Matkowsky [4],  Tseng
and Dugundji [5], Ball [6] and others. In recent years, Abou-Ray-
an et al.  [7],  Afaneh and Ibrahim [8],  Nayfeh et al.  [9],  Chin and
Nayfeh [10], Kreider and Nayfeh [11], Nayfeh and Emam [12-14],
Mamandi  et  al.  [15],  Yang  and  Zhang  [16],  Emam  and  Abdalla
[17], and Ghayesh and Farokhi [18] have been devoted to analyz-
ing  the  non-linear  response  of  buckled  beams,  which  is  still
open for research.  A basic problem is  the dynamic stability of  a
column in straight shape in compression. Movchan [19] proved
that  a  column  is  dynamically  stable  when  compression  load  is
smaller  than  the  Euler  load.  However,  in  the  sense  of  the  Lya-
punov stability, it is not clear theoretically up till now whether or
not  a  column  just  at  the  first  bifurcation  point  is  dynamically
stable and unstable when the load is greater than the Euler crit-
ical load. Not only the construction and analysis of the Lyapun-
ov functional is the key problem in the dynamic stability of struc-
tures,  but also the key problem in the other areas,  such as con-
trol  theory  [20-22].  In  this  paper,  by  the  Lyapunov  functionals
proposed by the author, the dynamic stability of two conservat-
ive systems is analyzed. The dynamic stability of  a column with

one end fixed and the other clamped in rotation is proved theor-
etically.

The paper is organized as follows：Section 2 is some basics,
including  definition  in  the  sense  of  the  Lyapunov  stability,  the
Lyapunov  theorems  on  dynamical  stability  and  total  energy  of
the  column  in  vibration.  Section  3  presents  a  conservative  sys-
tem of finite degree of freedom with a parameter, i.e. system I, an
analysis  of  the dynamic stability  of  system I  and a  column with
one end fixed and the other clamped in rotation when the load is
smaller  than  or  equals  to  the  Euler  critical  load.  Section  4
presents  another  conservative  system  of  finite  degree  of  free-
dom with a parameter, i.e. system II, an analysis of the dynamic
instability of  system II  and the column when the load is  greater
the Euler critical load. Section 5 is conclusions.

2     Some basics

2.1    Lyapunov direct method

lConsider a -degree-of-freedom dynamical  system, the state
variable is denoted by

l = ( 1; 2; 3; ¢ ¢ ¢ ; l; _"1; _2; _3; ¢ ¢ ¢ ; _ l)T ;

l = 1; 2; 3; ¢ ¢ ¢ ; (1) 

i _ i (i = 1; 2; 3; ¢ ¢ ¢ ; l)

l = 0
where  and   are the general displacements
and the general  velocities,  respectively.  Vector  is  the null
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l
l

solution  or  an  equilibrium  point  of  the -degree-of-freedom
system. The Euclidean norm of  is

k lk =

vuut lX
i=1

¡
2
i + _

2
i

¢
: (2) 

l = 0
In  the  sense  of  Lyapunov,  stable  and  unstable  of  the  null

solution  on dynamic stability are defined as [23]:

° t0

´ = ´ (°; t0) > 0

1.  The  null  solution  is  stable  in  the  sense  of  Lyapunov  if  for
any  arbitrary  positive  and  time  ,  there  exists  a

 such that if the inequality

k l (t0)k < ´; (3) 

is satisfied, then the inequality

k l (t)k < °; t 2 [t0;1) ; (4) 

is implied.

´ t0

2. The null solution is said to be unstable in the sense of Lya-
punov if for any arbitrary small  and any time  such that

k l (t0)k < ´: (5) 

t1We have at some other finite time  the situation

k l (t1)k = °; t1 > t0; (6) 

°where  is  a  given  arbitrary  positive  number.  There  are  two
sufficient conditions on stability and instability, respectively [23].

V( l) _V( l)

l = 0 V( l)

_V( l) =
dV
dt

V( l)

t

The  Lyapunov  stability  theorem: If  there  exists  a  positive-
definite function  whose total time derivative  is negat-
ive  semi-definite  along  every  trajectory  of  the  system,  then  the
trivial solution  is stable.  is called the Lyapunov func-

tion,  and  is  the  total  time  derivative  of  along

every trajectory of the system, where  is the time.

U( l) _U( l)

l l = 0 U( l)

The Lyapunov instability theorem: If there exists for the sys-
tem  a  function  whose  total  time  derivative  is  posit-
ive-definite along every trajectory of the system and the function
itself can assume positive values for an arbitrarily small values of

, then the trivial solution  is unstable.  is also called
the Lyapunov function of the system.

2.2    Total energy of a column in vibration

E I
b

N
w µ

s 2 [0; b]
h 2 [0; s ] o

An  inextensible  planar  column  with  one  end  fixed  and  the
other  clamped  in  rotation  is  shown  in Fig.  1.  denotes  the
bending  rigidity  of  the  column,  denotes  the  length  of  the
column  before  deformation,  denotes  an  axial  compression
load,  and  denote lateral deflection and the tangential angle
of  the  lateral  deflection  curve,  respectively.  and

 denote two arc-length coordinates with origin  on the
axial line before deformation.

The total energy of the system is sum of potential energy and
kinetic  energy.  Elastic  potential  energy  equals  to  the  strain  en-
ergy. Dimensionless form of the strain energy is

1Z
0

1
2
µ0

2dx ; (7) 

x =
s
b

µ0 =
@µ

@x
N

where  and  .  Dimensionless  form  of  potential

energy of the external force  is

k2

1Z
0

(cos µ¡ 1)dx ; (8) 

k = b

r
N
E I

where  is  the  load  factor.  Dimensionless  form  of

translational kinetic energy is

1Z
0

1
2
®

0@ xZ
0

_µ cos µd»

1A2

dx ; (9) 

® =
mb4

E I
m

_µ =
@µ

@t
» =

h
b

where ,  is  the  mass  per  unit  length  of  the  column,

 is  the  angular  velocity,  and .  Dimensionless  form

of rotational kinetic energy is

1Z
0

1
2
¯ _µ2dx ; (10) 

¯where  is the moment of inertia per unit length of the column.
Summing  up  Eqs. (7)-(10) ,  we  have  dimensionless  form  of  the
total energy of the system

V=

1Z
0

·
1
2
µ0

2
+ k2 (cos µ¡ 1)

+
1
2
®

0@ xZ
0

_µ cos µd»

1A2

+
1
2
¯ _µ2

35dx (11) 

Boundary  conditions  on  the  tangent  angle  of  the  column  in
Fig. 1 are

µ (0; t) = 0; µ (1; t) = 0: (12) 

k =The load factor at the first bifurcation point is . Consid-
ering  conditions  in  Eq. (12) ,  we  have  the  Fourier  series  of  the
tangential angle

µ (x ; t) =
1X

i=1
i (t) sin (i x) ; jµj < 1: (13) 

Based  on  the  Hamilton  principle,  trajectory  of  the  system
makes functional
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Fig. 1.   An inextensible planar column with one clamped-end and
the other clamped in rotation
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