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a b s t r a c t

Numerical solutions of the steady transonic small-disturbance (TSD) potential equation are computed
using the conservative Murman−Cole scheme. Multiple solutions are discovered and mapped out for the
Mach number range at zero angle of attack and the angle of attack range at Mach number 0.85 for the
NACA 0012 airfoil. We present a linear stability analysis method by directly assembling and evaluating
the Jacobian matrix of the nonlinear finite-difference equation of the TSD equation. The stability of all
the discovered multiple solutions are then determined by the proposed eigen analysis. The relation of
stability to convergence of the iterative method for solving the TSD equation is discussed. Computations
and the stability analysis demonstrate the possibility of eliminating themultiple solutions and stabilizing
the remaining unique solution by adding a sufficiently long splitter plate downstream the airfoil trailing
edge. Finally, instability of the solution of the TSD equation is shown to be closely connected to the onset
of transonic buffet by comparing with experimental data.

© 2017 The Author(s). Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics.
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The non-uniqueness of numerical solutions of potential equa-
tions at transonic speeds has been found for three decades. Stein-
hoff and Jameson [1] first reported multiple solutions for the
full potential (FP) equation. Chen [2] first reported the existence
of multiple solutions of the steady transonic small-disturbance
(TSD) equation using the nonconservative Murman−Cole scheme.
Nixon [3] also found multiple solutions using the TSD equation
modified with vorticity and entropy corrections. Salas et al. [4,5]
did extensive study onmultiple solutions of the FP equation. Jame-
son [6] demonstrated that non-unique solutions of Euler equa-
tions can be obtained for certain airfoils. Hafez and Guo [7,8]
investigated the flow over airfoils with flat and wavy surface by
solving the steady potential equations, the Euler equations, and
the Navier−Stokes equations. They found that all of the equations
can generate multiple solutions at zero angle of attack in certain
Mach number ranges. Luo et al. [9] showed that the multiple
solutions of the transonic small transverse disturbance equation
are independent of the difference schemes and iterative methods
and found multiple solutions for a three dimensional wing.

Williams et al. [10] investigated the stability of multiple solu-
tions of the unsteady TSD equation by a time-marching method
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and showed that the asymmetric solution results from an ex-
tremely long time scale instability of the symmetric solution.
Caughey [11] investigated the stability of nonunique solutions of
the steady Euler equations by time-accurate simulations of the
unsteady flow past airfoils for which there exhibit nonunique
solutions. Bailey and Beam [12] evaluated the temporal stability
of the steady-state solutions of the compressible Navier−Stokes
equations in two dimensions by freezing the Jacobian matrices
(approximate Newton’s method) of the finite-difference approx-
imations.

In a recent paper, Kuzmin [13] presented a comprehensive
review of multiple-solution phenomenon for transonic flow over
different airfoils. Multiple solutions of the Euler and Reynolds
averaged Navier−Stokes (RANS) equations are discussed in detail.
The airfoils admitting multiple solutions generally have a long flat
segment, and the instability of the solutions is attributed to the
rupture/coalescence of supersonic regions.

The present paper is undertaken to study the stability of mul-
tiple solutions of the steady TSD equation with the eigenvalue
technique. Numerical solutions of the steady TSD equation are
first obtained using the conservative Murman−Cole scheme and
are considered as equilibrium points. Then the Jacobian matrix is
constructed from the discrete steady TSD equations and evaluated
using the numerical solution. The eigenvalues of the Jacobian ma-
trix are calculated and the stability of the numerical solution is
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Nomenclature

A Jacobian matrix
Cl lift coefficient
c chord length
I, J rectilinear grid number
i, j rectilinear grid index
il grid index at the leading edge of the airfoil
it grid index at the trailing edge of the airfoil
M∞ freestream Mach number
q solution vector
q∞ freestream velocity
Re Reynolds number
x, y Cartesian coordinates
α angle of attack
γ ratio of specific heats
λ eigenvalues of the Jacobian matrix
ν number of iterations
φ perturbation velocity potential
ε maximum residual

identified. The relation between stability of the numerical solution
and convergence of the iterative method is discussed. Then the
elimination of the multiple solutions by attaching a splitter plate
to the airfoil trailing edge is studied, its physical significance is
discussed. Finally, comparisonswith experimental transonic buffet
data infer that the instability of the TSD solution may be closely
related to the onset of buffet.

The governing equation is the two-dimensional steady TSD
equation

(1 − M2
∞

−
γ + 1
q∞

M2
∞

φx)φxx + φyy = 0, (1)

where M∞ and q∞ are the freestream Mach number and velocity,
respectively, γ is the ratio of specific heats, φ is the perturbation
velocity potential, and the x-axis is parallel to the airfoil chord.

The conservative Murman−Cole difference scheme [14] is used
to write Eq. (1) into a difference equation over a rectilinear grid
(i, j). The grid line j = const. is parallel to the x-axis. The airfoil
is located on the x-axis where j = jw. The airfoil chord has unit
length. The leading and trailing edge of the airfoil is located at
x = −0.5 or i = il and x = 0.5 or i = it , respectively. Starting
from the airfoil leading edge till downstream far field, the grid line
j = jw is split into two grid lines j = jw + 0 and j = jw − 0, which
denote the upper and lower surface of the airfoil chord and wake,
respectively. The far field boundaries are located on the grid lines,
they are i = 1 and I , and j = 1 and J .

To compute the transonic flow about an NACA 0012 airfoil at
small angle of attack, a grid I = 81 and J = 41 is used. il = 21,
it = 61, 40 uniform grids in x-direction are used over the airfoil.
Away from the airfoil, one-dimensional stretch function is used to
generate the non-uniform grids. The far field extends to 40 times
chord length of the airfoil. The grid is set to be symmetric with
respect to both x- and y-axes. The local grids around the leading
edge of the airfoil are shown in Fig. 1.

The boundary conditions on the airfoil upper and lower surfaces
are applied on the grid line j = jw+0 and j = jw−0, respectively.

(φy)i,jw+0 = q∞(
dyu
dx

− α), (2)

(φy)i,jw−0 = q∞(
dyl
dx

− α), (3)

where yu and yl are the y-coordinate of the airfoil upper and lower
surface, respectively, and α is the angle of attack. At the grid point

Fig. 1. Local view of grids around airfoil leading part.

of the blunt leading edge, dy
dx is empirically replaced by that at

the grid point immediately behind the leading edge. The Kutta
conditions are also applied on the x-axis.

(φy)i,jw+0 = (φy)i,jw−0 = (φy)i,jw, (4)

φi,jw+0 − φi,jw−0 = φit ,jw+0 − φit ,jw−0. (5)

The airfoil boundary conditions and the wake Kutta conditions
are embedded into the difference equations at appropriate grid
points. The Kutta condition Eq. (4) introduces a new unknown
variable (φy)i,jw besides the discrete φi,j. The Kutta condition Eq. (5)
provides the required additional equation besides the difference
equations. The far field boundary condition is approximated by
φ = 0 for simplifying the computation and is verified in the
following. The number of algebraic equations is exactly equal to
the total number of unknowns. The system of nonlinear algebraic
equations is solved using the successive line over relaxation (SLOR)
method.

The multiple solutions of the TSD equation for the NACA 0012
airfoil at zero angle of attack and transonic speeds are computed.
The symmetric solution is obtained using the freestream flow as
the initial condition. The corresponding asymmetric solution, if
exists, is found using the solution for the NACA 0012 airfoil at
α = 1◦ and the sameM∞ as the initial condition. Themirror image
of such a solution is another asymmetric solution. Double precision
is used in the computation. When the maximum residual of the
computation drops from 10−2 to 10−10, the numerical solution is
considered as being convergent.

Figure 2 presents the pressure distributions of the symmetric
and asymmetric solutions obtained at M∞ = 0.84 and α =

0, compared with those obtained by Williams et al. [10], who
solved the time-accurate TSD equation using the conservative
Engquist−Osher difference scheme [15]. The two computational
results agree well except near the shock waves. Similar multiple
solutions at zero angle of attack for the NACA 0012 airfoil are found
at M∞ = 0.85 and 0.86 by the above method. The symmetric and
asymmetric pressure distributions for M∞ = 0.85 and 0.86 are
shown in Fig. 3 and Fig. 4, respectively. On the other hand, the
solutions forM∞ = 0.82, 0.83, 0.87 are all unique and symmetric.
An increment of 0.01 of the freestreamMach number is used in the
present study in the search for the multiple solutions.
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