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a b s t r a c t

We extend the impulse theory for unsteady aerodynamics, from its classic global form to finite-domain
formulation, then to a minimum-domain version for discrete wake. Each extension has been confirmed
numerically. The minimum-domain theory indicates that the numerical finding of Li and Lu (2012) is of
general significance: The entire force is completely determined by only the time rate of impulse of those
vortical structures still connecting to the body, along with the Lamb-vector integral thereof that captures
the contribution of all the rest disconnected vortical structures.
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The impulse theory pioneered by Burgers [1] and later devel-
oped independently by Wu [2, 3] and Lighthill [4], among others,
serves as a primary theoretical tool in unsteady aerodynamics,
in particular in the field of biological locomotion. For example,
among others, by using the impulse theory, Hamdani and Sun [5]
found that during the impulsive starts of a two-dimensional wing,
the large vortex at trailing-edge during fast pitching-up rotation
causes a large aerodynamic force; Birch and Dickinson [6] exam-
ined the influence of wing-wake interactions on the production of
aerodynamic forces in flapping flight; Wang andWu [7] identified
the roles of vortex rings in lift production or reduction; Kim et al.
[8] investigated vortex formation and force generation of clapping
plates with various aspect ratios and stroke angles; and most
recently, Andersen et al. [9] studied the close relation between the
wake patterns and transition from drag to thrust on a flapping foil.

Despite its great generality and neatness, however, the classic
form of impulse theory has an inherent limitation. It requires cal-
culating the entire vorticity field in externally unbounded domain,
or we may say that the theory is of global form. In contrast, the
domain in computational and experimental fluid dynamics (CFD
and EFD) is always bounded by a finite control surface Σ , say,
with some vorticity inevitably going out of Σ shortly after the
body motion starts. Hence, so far the impulse theory has been
mostly confined to dealing with a sudden-start motion or flapping
wings before the body-generated vorticity escapes out of a finite
domain, beyond which the theory is invalid. Evidently, it is highly
desired to extend the theory to a finite-domain form, such that
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for any body motion and deformation one can always utilize the
vorticity-distribution data provided by CFD/EFD to diagnose the
force constituents.

Mathematically, a general impulse formulation of aerodynamic
force for arbitrary finite domain has been given by Noca et al. [10,
11]. Although the force prediction by the general formulation is ac-
curate, however, it contains cumbersome boundary-integral terms
with complicated physical meaning, making it difficult to pinpoint
the dominant dynamic mechanisms responsible for the force. So
the issue is whether the formulation can be significantly simplified
to a powerful theoretical–physical tool for practical applications.

Here, a key physical observation is: unlike steady flows where
the wake is always continuous, unsteady wakes behind flapping
wings are often (though not always) discrete, for which the finite-
domain impulse theory can be greatly simplified, which can then
clearly reveal some simple physics of crucial importance. A pi-
oneering work in this direction was made by Li and Lu [12]
in a theoretical–numerical study of viscous and unsteady wake
generated by flapping plates in relatively slow forward motion.
There, thewakewas found to be two rows of almost discrete vortex
rings. The authors presented a finite-domain impulse formulation,
and then found numerically that, the force of flapping plate is
dominated by just the two vortices that still connect to the body.

This Letter proves theoretically, and confirms numerically, that
the finding of Ref. [13] is of general significance: As long as wake
vortices are discrete, the analysis domain in CFD/EFD can be min-
imized to a zone enclosing the body and those body-connected
vortical structures. The force is solely determined by the time
rate of the impulse of body-connected structures and a Lamb-
vector integral thereof. The latter captures the contribution of all
disconnected vortices in the wake.
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Fig. 1. Definition of notions for a moving/deforming body through the fluid in an
arbitrary control volume V = Vf + B bounded by Σ . The boundary of fluid Vf alone
is ∂Vf = Σ + ∂B.

Consider incompressible flow with density ρ = 1 for neatness.
For an arbitrarymoving/deforming body, using the notation shown
in Fig. 1, the total force is Let ∂B andΣ bematerial surfaces, and for
convenience we set the density ρ = 1. Then the total force acting
on the body is

F = −

∫
∂B
(−pn + τ)dS (1a)

= −
d
dt

∫
Vf

udV +

∫
Σ

(−pn + τ)dS, (1b)

where τ = νω × n is the shear stress with ω = ∇ × u
being the vorticity. The central issue of the impulse theory is to
express Eq. (1b) by the time rate of impulse to bypass the non-
compact part of the total momentum that has poor divergence as
|x| → ∞[13,14]. Some algebraic details are outlined in Appendix.
By Eq. (A.1a), we split the total momentum in Vf into two parts:

Pf ≡

∫
Vf

udV = If − Sf , (2)

where

If ≡
1
k

∫
Vf

x × ωdV , (3a)

Sf ≡
1
k

∫
∂Vf

x × (n × u)dS = SΣ + SB. (3b)

Here If is the vortical impulse of Vf with k = n − 1, n = 2, 3
being the spatial dimension, the subscriptsΣ and B denote surface
integrals over external and internal boundaries of Vf , respectively.
Then Eq. (1b) yields

F = −
dIf
dt

+
dSB
dt

+
dSΣ

dt
+

∫
Σ

(−pn + τ)dS. (4)

For latter use, the kinematic content of dSf /dt and the dynamic
content of dIf /dt are given in Appendix. Owing to the physical
compactness of vorticity field, If surely remains finite. In contrast,
SΣ represents a non-compact part ofPf .Wehave proved rigorously
(not shown here) that if the domain V = Vf +B, whichmaywell be
finite, contains the entire compact vorticity field, then the third and
fourth terms of Eq. (4) are canceled and the global form follows.

For a material Σ , substituting Eq. (A.5) into Eq. (4), we obtain
the impulse formulation in arbitrary material finite domain

F = −
dIf
dt

−

∫
Vf

ω × udV + F∂B +
1
k

∫
Σ

x × uωndS + FΣ , (5)

where

F∂B ≡
1
k

∫
∂B

x × (n × a)dS +
1
k

∫
∂B

x × uωndS, (6)

and

FΣ ≡
1
k

∫
Σ

(x × σ + τ)dS, (7)

is a viscous effect at Σ with σ = ν∂ω/∂n being the vorticity
diffusive flux.

The Lamb-vector term is the effect of the vortical flow outside
Vf (including the virtual fluid in B) on the force [15]. Physically,
one may replace ω × u in this term by ω × ∇φe, where ∇φe is the
potential velocity induced by vorticity outside Vf – although this is
inconvenient for CFD/EFD – and hence when all the rest vorticity
outside Σ is sufficiently far from Vf then this vortex-force term
may be neglected.

All boundary-integral terms in Eq. (5) have neater and clearer
physical meaning than that of Noca et al. [10, 11]. F∂B represents
the explicit effect of bodymotion anddeformation,which for active
motion/deformation is a prescribed integral due to the adherence
of u, a, and ωn at ∂B, and is completely independent of the flow
field. Thus, F∂B serves as a driving mechanism of the flow field,
which is in contrast to the rest terms of Eq. (5) that represent the
fluid reaction to the body’s driving.

Equation (5) is exact and general for incompressible flow, and
fully equivalent to the unsteady vortex-force theory by using the
Reynolds transport theorem [16]. Thus it is applicable to both
steady and unsteady flow. But our concern here is only unsteady
flow. Unlike F∂B which is inevitable for moving-deforming body,
the Σ-integrals in Eq. (5) are no more than a necessary artifice to
express the force of the body in externally unbounded fluid by the
flow data in finite domain. They just reflect the effects of flow out-
side V on that inside, but their appearancemakes the characteristic
neatness of impulse theory completely lost, so the key physical
mechanism for producing force is covered up. A natural step to
simplify Eq. (5) is evidently to remove the Σ-integrals.

As exemplified by huge amount of observations including [13],
in many cases the wake consists of discrete or compact vortical
structures. This fact has made it possible to approximate the wake
vortex street by point vortices as von Kármán [17] did and later by
arrays of vortex patches [15]. Although in real unsteady flow the
wake vorticesmay still be connected by vortex sheets, compared to
concentrated vortices formed by vortex sheets, before rolling into
tight concentrate vortices the vorticity therein per unit length is
much weaker, and the intersections of Σ and the sheets are too
small to have appreciable effect on the force. Therefore, we can
choose specialΣ to avoid cutting any discrete concentrate vortices
by requiring

ω = 0 at and near Σ . (8)

We call an outer boundary satisfying Eq. (8) a good Σ and a fluid
domain bounded by a good Σ a good Vf . By Eq. (8) all surface
integrals over Σ in Eq. (5) disappear.

There can bemore than one good Σ ’swhen the wake has many
discrete vortical structures. But for any compact vortical domain,
sayVfwk, bounded by a goodΣ , by Eqs. (A.7) and (8) the fluid exerts
no force to the body apparently:

Ffwk = −
dIfwk

dt
−

∫
Vfwk

ω × udV = 0, (9)

no matter how complex the vortical structures could be in Vfwk.
The same conclusion was made by Saffman [15] for inviscid flow
with ∂Vf satisfying ω · n = 0. In fact, Eq. (9) implies that dIfwk/dt
equals to the Lamb-vector integral over V∞ − Vfwk.

This being the case, of good Vf ’s we can always identify a ‘‘body-
connected zone’’ Vf con bounded by a good Σ , like that sketched in
Fig. 1, which contains all vortical structures still connecting to the
body, including attached boundary layers, separated shear layers
and rolled-up vortices thereby. Then the rest of Vf will certainly
belong to Vfwk and has no net contribution to Eq. (5). Therefore, we
obtain the desired minimum-domain force formula by impulse:

F = −
dIf con
dt

−

∫
Vf con

ω × udV + F∂B, (10)
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