IEC 61131-3 control applications vs. control
applications transformed in IEC 61499

Monika Wenger, Reinhard Hametner, Alois Zoitl*

* Automation & Control Institute,
Vienna University of Technology, Austria
(e-mail: {wenger, hametner, zoitl} @acin.tuwien.ac.at)

Abstract: Since distribution of control applications, exchangeability as well as modularization
becomes more and more important for the creation of flexible and competitive automation
systems we analyze a concept which is supposed to provide these properties. The presented
concept is based on a model-driven transformation of IEC 61131-3 projects into IEC 61499.
Therefore we transform a small IEC 61131-3 example project into IEC 61499 and compare the
simulation results with each other to examine first results on its usability in the automation

domain.

Keywords: Transformations, Control Applications, Models, Automation, Simulation

1. INTRODUCTION

Distribution of control applications is becoming more
and more important for todays automation systems. Also
exchangeability and modularity are considered necessary
functionalities within the automation domain. These prop-
erties allow the building of more flexible and competitive
automation systems since they are supposed to provide
the functionality to combine hardware components and
software tools of different vendors within one system as
well as the reuse of code. Within the industrial automation
sector currently the TEC 61131-3 standard (IEC 61131-3,
2003) is used for small as well as very complex systems.
This standard provides modularization but through the use
of global variables the reuse of code is not given in such an
extensive way as it is needed. Equally distribution is only
possible in a very static manner through the use of the
Access Path and global variables. The insufficient control
of the execution sequence is also identified as disadvantage.
Under consideration of the mentioned topics, the desired
support can be obtained by the IEC 61499 standard
(IEC 61499-1, 2005). This standard has been developed
as advancement of IEC 61131-3 and offers support for the
distribution of control applications. Since its event triggered
approach has been designed for distribution and also allows
the explicit control of the execution sequence and last but
not least is able to rebuild cyclic and procedural approaches,
it combines the current functionalities as well as the new
properties.

But the necessity to redesign the currently used control
software within the IEC 61499 standard is pointed out as
great disadvantage since the modality of software design is
quite different and can also be very cost and time-intensive.
Therefore we developed a model-driven transformation
between these standards to make available the desired
properties for flexible automation systems while avoiding
a redesign of the currently used IEC 61131-3 control
software within IEC 61499. Presently the transformation
concept has only be tested according to its transformation

functionality. Therefore this work aims at the testing of the
transformation outcome by the use of simulated devices.
For checking and verifying the model transformation
from TEC 61131-3 to IEC 61499 an industrial automa-
tion approach for testing control systems which is called
soft-commissioning can be used. The basic idea of Soft-
Commissioning (SC) is to test industrial control software
by connecting a controller (e.g., Programmable Logic
Controller) to a discrete event simulator. The greatest
advantage of SC is that it can be used and executed on
standard office workstations with round trip times smaller
than 100ms. A further approach could be Reality in the
Loop (RIL) which also allows coupling simulation models
to real world objects. Schludermann et al. (2000) and
Auinger et al. (1999) show several combinations between
reality model and simulation model configurations. Hegny
and Zoitl (2010) explained a component-based simulation
framework on basis of IEC 61499 which supports several
simulation scenarios (e.g., fully simulated plant, integration
of external simulation tool, hybrid simulation and fully
operational).

Since an example application in IEC 61131 has already
been analyzed according to its modes and functionalities
we want to verify the transformation by comparing it with
the behavior of the transformed TEC 61499 application.
In the following the general transformation concept de-
scribed in the work of Siinder et al. (2008), and Wenger
et al. (2009b,a) are summed up. Section 3 introduces an
IEC 61131-3 example which is used to test the transforma-
tion concept. It also presents the transformation outcome
according to the transformation concept. Finally the IEC
61131-3 source as well as the IEC 61499 target are simulated
and the results are compared to each other.

2. TRANSFORMATION CONCEPT

The transformation concept is divided into four parts.
The first part describes the transformation process in
general. The second and third part illustrate the general



transformation rules whereas two sets of rules are suggested.
And the last part contains information about common parts
of both transformation sets.

2.1 Transformation Process

The transformation process is predetermined by the chosen
transformation framework. We use the Xpand generator
framework (originally developed as part of the openArchi-
tectureWare project) which is part of the Eclipse Modeling
Project (The Eclipse Foundation, 2010a). The Xpand frame-
work offers textual languages for checks, code generation,
and model transformation which can operate on the same
models (e.g., XMI or XML) and meta-models (e.g., Ecore
or XSD) (The Eclipse Foundation, 2010b).

Figure 1 illustrates the process of the transformation. At
the beginning of every transformation a library including a
file for each self defined IEC 61131-3 Program Organisation
Unit (POU) is built. During this library building part a
standard library match is performed since both standard
libraries exhibit significant differences which have to be
resolved first.

After the building of all FB files (*.fbt) the surrounding
structure of the IEC 61499 control application is build
and saved in a System file (*.sys). The library and the
system part of this transformation process set up the IEC
61499 solution of the provided TEC 61131-3 project. The

et oy

Fig. 1. Model-driven transformation process

library
POU
(*.fot) l

synem
(*.5ys)
inner

strucmre

library building as well as the system building part of
the transformation process are realized by transforma-
tion rules. This transformation rules allow to transfer
the hierarchical structure of IEC 61131-3 models into
IEC 61499 ones. The IEC 61131-3 standard introduces
five programming languages Sequential Function Chart
(SFC), Ladder Diagram (LD), Function Block Diagram
(FBD), Instruction List (IL) and Structured Text (ST).
The implemented transformation process currently just
supports the transformation of ST and FBD.

Since there are significant differences between IEC 61131-3
and TEC 61499 models it is not possible to just map the
elements in an universally valid concept. Currently there
are two transformation concepts suggested. On the one
hand this is the Name-Driven and on the other hand the
Execution-Driven approach.

2.2 Name-Driven Transformation

The Name-Driven transformation concept is based on a
name analogy of the IEC 61131-3 and the TEC 61499

standard. Both standards contain a Resource® element

which is used as starting point for the development of this
transformation concept. According to the mapping of a
Resource®'3! to a Resource®'4%? the constraints between
the other elements of the two standards can be derived.
Therefore every Program Organization Unit (POU) and its
corresponding task is transformed to one Application and
for every Configuration one Device is created. If there exists
a Project element the relevant information is transfered
to the System element. Table 1 shows the mapping for
this transformation concept based on the analogy of the
Resources.

Table 1. Name-Driven Transformation rules

IEC 61131-3 IEC 61499
Project System
Configuration Device
Resource Resource
Program & Task | Application

2.8 Execution-Driven Transformation

The Execution-Driven concept is based on the elements
responsible for the execution of the control logic. Therefore
every Task has to be mapped to one Resource'49?.
According to the IEC 61499 standard a Resource is
responsible for the execution of a specific control part.
Each POU is transformed to one Application and each
Resource13! to one Device. But having not every POU
mapped to a Task those POUs would not be taken into
account by the transformation. This is why it is necessary
to build one Resource®'4% for every POU without Task
mapping as well. The Configurations are then transformed
in an implied manner to the System. Therefore the
Configurations become effectively part of the System
element. Table 2 shows the mapping for this transformation
concept based on the analogy of a Task and a Resource514%9,
The use of these concepts depends on the one hand on the

Table 2. Execution-Driven Transformation rules

IEC 61131-3 | IEC 61499
Configuration System
Resource Device

Task Resource
Program Application

elements the vendor tool provides and on the other hand the
concrete structure of the control application. If the vendor
tool just allows one Configuration with one Resource or
just one Resource is used in the control application but lots
of different Tasks then we suggest to concentrate on the
executing elements and therefore use the Execution-Driven
concept. On the other hand the Name-Driven concept is
easier to understand. And if there are very few Tasks but
lots of Resources within the control project then the Name-
Driven concept is supposed to be the right choice. Currently
there are no tests available which prove the advantage of
one single concept.

61131

1 Resource represents an IEC 61131-3 Resource and

Resource1499 an IEC 61499 Resource



Download English Version:

https://daneshyari.com/en/article/720074

Download Persian Version:

https://daneshyari.com/article/720074

Daneshyari.com


https://daneshyari.com/en/article/720074
https://daneshyari.com/article/720074
https://daneshyari.com/

