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A B S T R A C T

Variability in the mechanical properties of additively manufactured metal parts is a key concern for their ap-
plication in service. One of the parameters affecting the above-mentioned property is solidification texture which
is driven by scan patterns and other process variables. Understanding of how these textures arise in the AM
process can provide a pathway to control these features which ultimately decide the final structural material
properties. In this work, a Cellular Automata (CA) based two-dimensional microstructure model is formulated
and implemented to understand grain evolution in AM. Grain evolution in multilayer depositions using various
scan patterns in Directed Energy Deposition (DED), Metal Laser Sintering/Selective Laser Melting (MLS/SLM),
and Electron Beam Melting (EBM) is presented and qualitatively compared with reported literature. Results
show strong correlation of scan patterns with evolving grain orientations. Variability in grain size and or-
ientation evolution during SLM and EBM processing of metallic materials showed direct influence by exposure to
different cooling rates and thermal gradients. The similarities between the simulated and reported results lead us
to conclude CA based modeling for predicting grain orientation and size in metal AM processes is useful for
prediction of continuum level structural properties at global and local length scales.

1. Introduction

Metal based additive manufacturing (AM) processes are some of the
most promising manufacturing routes for producing near net shape
metallic products. Advantages of AM over conventional manufacturing
technologies include greater flexibility for generating complex geome-
tries with less lead times and raw material consumption [1–3]. Based on
the input feed system and energy source, the metal melting-based AM
methods can be broadly classified into Directed Energy Deposition
(DED), Selective Laser Melting (SLM), and Electron Beam Melting
(EBM). Detailed information about each machine, their feed system and
energy source can be found in literature [4].

The main challenge in the adoption of AM technology is the quali-
fication and certification of parts [5]. For qualification, a part must be
built without failure and should possess mechanical properties above a
certain specification for it to fulfill its service requirement. The me-
chanical property of any AM part is derived from its solidified micro-
structure features such as grain size, grain type, texture, and present
phases [2]. Variability in the microstructure due to different process
conditions generates non-uniform mechanical property variations in a
part [6,7] which limits its predictability and qualification. Common
variability in the microstructures are the types of grain (such as
equiaxed or columnar) driven by thermal gradient (G) and solidifica-
tion rate (R) [8–10], texturing due to use of various scan patterns

[11–15], and deleterious phase formation [16,17] during cooling.
Identification of the above-mentioned variabilities and their correlation
with mechanical properties through experimental routes is a tedious
process which requires a large set of experiments. This not only extends
the qualification time but also requires a huge amount of resources and
money. With the help of predictive tools, these variabilities could be
simulated and the outputs could be further used for the estimation of
mechanical properties before the part is printed. This eases the decision
making as the process parameters suitable for achieving desirable
properties could be rapidly chosen in addition to saving time, money,
and resources.

Various works [18–23] have been published which predict AM
material microstructures. Most of these works are a direct adoption of
welding process predictions, which resemble AM; however, AM is more
complicated, considering rapid high heat input and repeated heating
and cooling cycles. Phase field [18,19], Monte-Carlo [20], Stochastic
analysis [21], and Cellular Automata [22,23] methods are commonly
used for the simulation of these features in AM processes. Among these
methods, the Phase field method is often considered the most accurate
method followed by Cellular Automata and other methods. The
downside of using the Phase field method is its computational cost; and
therefore, these methods are limited to small size scales. On the other
hand, Cellular Automata methods have a good tradeoff between accu-
racy and scalability for large domain sizes. When it comes to AM, small-

https://doi.org/10.1016/j.addma.2018.03.021
Received 13 September 2017; Received in revised form 22 February 2018; Accepted 19 March 2018

⁎ Corresponding author.
E-mail addresses: Javed.akram@3dsim.com, jaavedakram@gmail.com (J. Akram).

Additive Manufacturing 21 (2018) 255–268

Available online 20 March 2018
2214-8604/ © 2018 Published by Elsevier B.V.

T

http://www.sciencedirect.com/science/journal/22148604
https://www.elsevier.com/locate/addma
https://doi.org/10.1016/j.addma.2018.03.021
https://doi.org/10.1016/j.addma.2018.03.021
mailto:Javed.akram@3dsim.com
mailto:jaavedakram@gmail.com
https://doi.org/10.1016/j.addma.2018.03.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.addma.2018.03.021&domain=pdf


scale features such as segregation and deleterious phase formation do
matter, but large-scale feature such as texturing due to scan patterns
also matter. The development of texture in AM processed parts gives
rise to anisotropic mechanical properties. Therefore, prior prediction of
anisotropy is of paramount importance to evaluate mechanical property
evolutions in AM parts.

Wei et al. [15] performed numerical heat transfer and flow calcu-
lations to provide understanding of solidification morphology and
texture development in multi-layer AM processes for unidirectional and
bidirectional scanning. Their work provides aspects of texture devel-
opment in multi-layer AM but only shows a schematic representation of
texture, mapped using maximum heat flow direction. Recently, Rodgers
et al. [20] at Sandia National Laboratories captured 3D grain evolution
of solidified structures using a Q-Potts Monte Carlo approach. Their
work widely showed different types of texture and grain evolution in
AM driven by various scan patterns. However, the model does not in-
clude the direct influence of thermal gradient and cooling rates on
evolving microstructure as well as material texture. Simply utilizing the
kinetic strength function, which is related to scan velocity, mobility,
and build layers, they were able to intelligently decide what type of
grains (equiaxed or columnar) are generated in the simulation domain.
The advantage of using their model is that an estimation can be made of
the kind of grains and their morphology. To the best of our knowledge,
no Cellular Automata or Phase Field simulations are reported in lit-
erature which incorporates the effect of scan patterns on grain evolu-
tion.

In the present work, 2D-Cellular Automata was developed to si-
mulate the grain morphology of a multi-layer build. The model in-
corporates the fundamental aspects of solidification to demonstrate
grain evolution in AM. Effect of scan patterns, thermal gradients, and
cooling rates on the resulting microstructure have been demonstrated.
To save on computational time, constitutional undercooling has been
neglected. Therefore, the simulation outputs grain size, type of grains,
and texture information. The current model is decoupled from a
thermal model and uses constant thermal gradients and cooling rates.
The grain morphology results are demonstrated for different scan pat-
terns used in AM machines and validated and discussed with the ex-
isting literature data.

2. Model description

2.1. Formulation

The Cellular Automata method is an algorithm which describes the
spatial and temporal evolution of a physical system by applying de-
terministic or probabilistic transformation rules [24]. In this method,
the spatial domain is divided into finite cells such that they can fit the
simulation domain with integral multiples of the finite cell size, and the
state of every cell is determined by the state of its neighbor cells ac-
cording to a set transformation rule. In the present model, four vari-
ables are assigned to each cell: (a) a state variable defines the state of a
cell i.e., solid, liquid, and interface; (b) an orientation variable re-
presents the preferred growth orientation of the grain; (c) a grain
number variable is used to distinguish the grains from one another; and
(d) a solid fraction variable is used to track the transition of the liquid
cell to solid cell. Eight nearest (first and second nearest) neighbors are
selected in this model. The interface cells are identified if one of the
cells at the 8 neighbor’s cells is a solid cell. At the beginning, new nuclei
populate at interface cells based on the nucleation law [25] (Eq. (1)):
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fs is the fraction of solid. The interface cell can represent the boundary
of the melt pool and grain boundaries of solidifying grains inside the

melt pool. The nucleation model incorporates the effect of both total
undercooling and cooling rate. The nucleation probability of the cells
located at the interface cell is calculated using Eq. (2) for every time
step [25]:
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where NI is the total number of cells located at the interface (melt pool
and grain boundaries). Once the probability is greater than a random
number generated by the computer between 0 and 1, that cell will
convert from liquid to solid. The model becomes deterministic as a
function of rounding the probability variable. Once the new solid nu-
cleus is nucleated, preferential growth direction θ( )o is assigned based
on the normal angle between the nucleated cell and the moving heat
source. The driving force for growth comes from the amount of thermal
undercooling present at the solid/liquid interface. The velocity of the
solid/liquid interface is calculated using Eq. (3) [26]:

=V μ T(Δ )N k (3)

where μk is the interface kinetic coefficient, and ΔT is the total under-
cooling that consists of thermal and curvature undercooling calculated
using Eq. (4):

= −T T K tΔ [Δ Γ ( )]T n (4)

where ΔTTis the thermal undercooling, Γ is the Gibbs Thomson coeffi-
cient, and K t( )n is the mean curvature which is calculated according to
Eq. (5) as described by [25]:
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where lc is the size of the cell and N is the total number of neighbor cells
including both first and second nearest neighbors sharing the edge and
corner of the given cell. In this case, that number is 8. To account for
anisotropy, the crystal growth velocity (Vg) according to the crystal
preferential growth direction θ( )o is calculated using Eq. (6):

= + −V V δ θ θ{1 cos[4( )]}g N k o (6)

where δk is the degree of kinetic anisotropy and θ is the angle between
the horizontal direction and the normal to the solid/liquid interface.
The angle θ is obtained from the gradient of solid fraction at the solid
liquid interface. Once the velocity of the interface is obtained, the rate
of change of the evolving solid fraction at the interface cell is calculated
using Eq. (7):
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where Δt is the time increment and G is a geometric factor related to the
first and second nearest neighbors. G is calculated using Eq. (8) as
described by [26]:
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where bI and bII represent first and second nearest neighbors respec-
tively in a square grid. The geometric factor accounts for higher soli-
dification rate for first nearest neighbors compared to second nearest
neighbors. If the fraction solid of a cell becomes 1, the status of a cell
changes from an interface to a solid cell. The simulation runs until all
the liquid cells change to solid. The constants used for this simulation
are as follows: lattice size (lc)= 1 μm, interface kinematic coefficient
μ( )k =2×10−6, Gibbs Thomson coefficient (Γ) =1.7× 10−7, degree
of kinetic anisotropy (δk)= 0.7, and nucleation parameter μ( )N =103.
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