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A B S T R A C T

This original work proposes to investigate the transposition of crystallography rules to cubic lattice architectured
materials to generate new 3D porous structures. The application of symmetry operations provides a complete
and convenient way to configure the lattice architecture with only two parameters. New lattice structures were
created by slipping from the conventional Bravais lattice toward non-compact complex structures. The resulting
stiffness of the porous materials was thoroughly evaluated for all the combinations of architecture parameters.
This exhaustive study revealed attractive structures having high specific stiffness, up to twice as large as the
usual octet-truss for a given relative density. It results in a relationship between effective Young modulus and
relative density for any lattice structure. It also revealed the opportunity to generate auxetic structures at will,
with a controlled Poisson ratio. The collection of the elastic properties for all the cubic structures into 3D maps
provides a convenient tool for lattice materials design, for research, and for mechanical engineering. The re-
sulting mechanical properties are highly variable according to architecture, and can be easily tailored for specific
applications using the simple yet powerful formalism developed in this work.

1. Introduction

The important development of Additive Manufacturing (AM) pro-
cesses and the potential capabilities that it offers for industrial appli-
cations, allows producing more complex three-dimensional parts. These
opportunities highlight new ways to design optimal functional and
lightweight structural parts. The use of lattice structures is also moti-
vated by the requirements to reduce the costs inherent to the AM
processes by decreasing material consumption and building time. The
development of architectured porous materials is the ultimate step to
achieve mass reduction on mechanical parts. Basically, this reduction
consists in removing the fraction of the material that has a limited effect
if any on the mechanical resistance. Hence, only the load-bearing ma-
terial fraction is kept. To achieve this mass-reduction, two main stra-
tegies are emerging. The first approach relies on a topological optimi-
zation [1,2] using finite element computation [3,4] aimed at removing
the needless part of the material (Fig. 1.1). This first strategy is efficient,
but depends widely on the initial geometry of the considered part. In
addition, topological optimization may result in multiple solutions,

with numerical issues on the selection of the proper optimal structure.
The second strategy aims at developing mesostructured metamaterials
having controlled properties, which can fit a large range of application
requirements [5,6,7]. Since the last decade, this strategy has been
successfully explored by Ashby and Bréchet [8,9]. They developed
hybrid multifunctional materials with appropriate properties providing
an extension of the Ashby selection map compared to the initial prop-
erties of the bulk materials.

The lattice architecture is especially attractive for its capability to
produce Functionally Graded Materials (FGM) with variable stiffness.
Again, there are two main strategies: either the lattice density is mod-
ified, or the architecture is altered. These two distinct concepts are il-
lustrated on Fig. 1.2 and .3: metal lattices were obtained by selective
laser melting by using TA6V powder, with a laser power of 175W and a
scanning rate of 775mm/s. If the density is affected (Fig. 1.2), the part
weight may become sub optimized. On the other hand, to adjust the
stiffness gradient while preserving mass minimization (Fig. 1.3), it is
necessary to produce architectures at will with a continuous procedure.
It is also necessary to capture accurately the effective contribution of
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architecture to stiffness, independently of the density. As far as we
know, up to now, there has not been any method reported in the lit-
erature for the continuous generation of lattice architectures. In-
formation concerning the dependence of stiffness on density in a large
cluster of continuous structures is also a missing piece of information. It
would be very relevant and groundbreaking to set a method for the
generation of architectures using crystallographic rules, and to compare
them by evaluating the mechanical behavior. This paper proposes a
continuous generation of cubic architectures and the investigation of
the relationship between stiffness and density.

Periodic-cell and architectured structures have been extensively
studied due to straightforward mathematical description [10,11]. The
octet-truss lattice is an example of a structure which is commonly in-
vestigated. Fuller initially proposed this structure in 1961 [12]. Nayfeh
focused on its elastic properties [13], while its plastic behavior has been
studied by Deshpande et al. [14,15,16]. It is worth noticing that the
octet-truss lattice is especially attractive because it fulfills the Maxwell
criterion [17]:

b− 3j+ 6= s−m (1)

where b is the number of struts, j is the number of joints, s and m are the
number of states of self-stress and mechanisms. The octet-truss is
therefore able to bear mechanical loading even in the case of friction-
less rotation at joints [15]. The octet-truss symmetry corresponds to a
face-centered cubic structure [13]. Many other structures with cubic
symmetry have also been analyzed [7,10,18,19,20]. However, some of
these cubic lattices were considered of lesser interest since they do not
satisfy the Maxwell criterion. Indeed, they are assumed to exhibit sig-
nificant stress level at nodes inducing an early collapse of the structure.

Nevertheless, any cubic lattice could possibly be attractive regard-
less of Maxwell’s criterion. For instance, the primitive cubic structure
[10] does not satisfy the Maxwell criterion, but is commonly adopted
for simple mechanical structures. In itself, any lattice structure could be
interesting due to specific elastic properties [7,10,19], or an unusual
Poisson ratio [11,21,22,23], or again a high relative stiffness [11], or
creep properties [24] with respect to specific application.

This study aims at exploring large numbers of geometrical config-
urations based on cubic lattices with crystallographic symmetry. First,
the study will propose a continuous description of the architecture with
reduced parameters. Next, the third section is devoted to the estimation
of elastic properties using finite elements computations. Numerical re-
sults are then illustrated as performance surfaces by exploring the
whole space of the architectural parameters. In the fourth section, the

effect of the lattice architecture on the overall specific moduli is ana-
lyzed leading to the formulation of an explicit relationship. The latter
clearly expresses the impact of relative density on elastic properties.
The end of this section is dedicated to the Poisson ratio of cubic
structures yielding to the identification of original auxetic structures for
specific architectures and density ranges. The paper ends with some
concluding remarks and provides some ideas for a future work.

2. Materials and Methods: New approach based on
crystallography rules

At first sight, the mathematical description of lattices is complex
since each beam location requires three position coordinates and three
Euler angles. The description is made easier by considering only the
joint nodes, having three coordinates only. It is common sense in
crystallography to reduce further the mathematical description of nodes
positions using symmetries. The minimal number of nodes to generate a
3D lattice can be reduced to a couple of points by proper use of all the
isometric operations of a given space group. This approach using
symmetries is innovative because it breaks with the habit of considering
lattices as a huge complicated beams cluster. This new approach focuses
on the minimalist architectural information of the lattice network. Any
alteration of this information would lead to great modifications by
moving continuously and slightly a single structural parameter. Such a
method is ideal for mechanical engineering due to its simplicity and its
versatility. The question arising at this point is: what is the minimal
information required to properly describe cubic lattices?

In materials science, the three most common crystal structures are
primitive cubic (Pm3m), face centered (Fm3m) and body centered
(Im3m). If the atoms in a crystal are replaced with vertices in the lattice,
and chemical bonds are beams, then crystalline architectures can be
directly applied to build porous materials. These three usual cubic
structures have a common point: they share the samem3m point group.
However, this m3m group contains only 10 well-known space groups,
leading to 10 lattice structures already reported in literature. This panel
would be very limited for producing FGM. To generate a larger number
of structures, it is necessary to break the rules given by Bravais lattices,
while preserving the symmetries of the point group. To distance our-
selves from these rules, let us first consider the Bravais structures more
closely. The Bravais cubic lattices are defined by two sets of nodes
positions:

– One at the origin, defined by the vertex of the primitive cube,
– One located in the middle of the faces (FCC), or in the middle of the
cube (BCC).

The first set of nodes must be preserved as is, because it is a man-
datory condition for cubic structures. The second set of nodes is more
interesting, because it is defined by changing geometric coordinates. If
one considers the unit cube length to be equal to one, then the sec-
ondary point has the following coordinates:

– For a primitive cube, it does not exist at all. Still, one can attribute
coordinates (0, 0, 0.5) to this node, and the resulting lattice will be
equivalent to the primitive cube. The structure is actually a per-
ovskite (ABX3)-related structure with an empty A site [25]. If the
structure is made of beams only, then the architecture can be con-
sidered as primitive-like.

– For a face-centered cube, the structure is set with a node at position
(0, 0.5, 0.5)

– For a body-centered cube, the structure is set with a node at position
(0.5, 0.5, 0.5)

By generalization, it is possible to set a continuous description of
cubic structures for Pm3m,Fm3m and Im3mspace groups by modifying
the position of this secondary node. If the coordinates of the node are

Fig. 1. The three main strategy to obtain porous materials 1) Topological optimization
and a kind of application [1], 2) Graded density change and an graded porous materials
obtain by SLM, 3) Microstructure change and a kind of periodic lattice product by SLM.
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