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a  b  s  t  r  a  c  t

It is well-known  that  the  effective  mechanical  properties  of  cellular  structures  can  be tuned  by varying
its  relative  density.  With  the  advancement  of  3D  printing,  variable-density  cellular  structures  can  be
fabricated  with  high  precision  using  this  emerging  manufacturing  technology.  Taking  advantage  of  this
unique  ability  to  fabricate  variable-density  cellular  structure,  an efficient  homogenization-based  topol-
ogy optimization  method  for natural  frequency  optimization  is presented  in  this  work.  The  method  is
demonstrated  using  a cantilevered  plate  with  a honeycomb  structure  and  is  validated  by  detailed  finite
element  analysis  and  experiment.  It  is shown  that the  optimal  design  can  be fabricated  by 3D  printing
and  shows  significant  enhancement  in  natural  frequency  and  reduction  in weight.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Natural materials (e.g. wood and bone) have drawn much atten-
tion for many years and it has been found that cellular structures
in those biological materials reduce the density of materials but
maintain remarkable mechanical performance [1,2]. Inspired by
these natural materials, cellular structures such as foams, hon-
eycombs, lattice structures, and other similar structures have
been engineered for their high performance in energy absorp-
tion and thermal insulation in combination with their relative
low weight [3–7]. Traditionally, engineered cellular structures are
manufactured using methods such as vapor deposition, foaming,
casting, and sintering [3,8]. Although these methods still play a
dominant role in producing cellular structures, they have manu-
facturing difficulties when dealing with complex cell geometry and
spatially-varying porosity. However, additive manufacturing (AM)
technology can overcome these difficulties since it has the abil-
ity to fabricate parts with almost unlimited geometric complexity
[9–12].

In fact, AM had already been employed to fabricate uniform-
density or stochastic cellular structures [13,14]. In addition, cellular
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structures with variable density can also be fabricated easily to
maximize the potential of this technology. First, it allows the
mechanical properties to be varied in different regions in order
to tailor the structure for specific design requirements. Second,
it leads to savings in material and energy consumption, which is
much more important for AM than for traditional subtractive man-
ufacturing, because geometric complexity is almost free with AM.
Third, according to previous simulation results, cellular structures
can be designed with increased resistance against defect propaga-
tion [15–18]. For these reasons, variable-density cellular structure
is a promising candidate for AM application.

In order to take advantage of the ability of AM to fabricate
variable-density cellular structures, a design optimization method
that is able to optimize their designs is necessary. One such method
is to optimize the strut size or wall thickness after obtaining the
designed cell structure [19–21]. By using this method, both the
structural and cell levels can be optimized, but the drawback is that
it is only applicable to some regular strut based cellular structures.
Another efficient design optimization method is already proposed
in our previous work for optimizing minimum compliance design
of AM cellular structure [22,23]. In this homogenization-based
method [24,25], the elastic properties of a given periodic cellular
structure are first obtained through computational homogeniza-
tion as a function of its relative density; then the homogenized
model is employed in a standard topology optimization algorithm

http://dx.doi.org/10.1016/j.addma.2017.10.001
2214-8604/© 2017 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.addma.2017.10.001
dx.doi.org/10.1016/j.addma.2017.10.001
http://www.sciencedirect.com/science/journal/22148604
http://www.elsevier.com/locate/addma
mailto:albertto@pitt.edu
dx.doi.org/10.1016/j.addma.2017.10.001


Please cite this article in press as: X. Wang, et al., Natural frequency optimization of 3D printed variable-density honeycomb structure
via a homogenization-based approach, Addit Manuf (2017), http://dx.doi.org/10.1016/j.addma.2017.10.001

ARTICLE IN PRESSG Model
ADDMA-222; No. of Pages 10

2 X. Wang et al. / Additive Manufacturing xxx (2017) xxx–xxx

to obtain the optimal relative density distribution, which is finally
converted to the actual variable-density cellular structure. The
advantage of this homogenization-based optimization method is
that it is easy to understand and implement; however, it can only
predict the optimal topology at the structural level instead of within
each cell.

Considering its efficiency, the homogenization-based method
will be extended to achieve natural frequency optimization of AM
cellular structures with variable densities in this paper. Natural fre-
quency optimization plays an important role in the design of many
engineering structures that are subjected to high-amplitude and
frequent vibrations [26]. These structures range from wind turbine
blades and engines to structures in seismically active regions, one
of their major concerns is dynamical failure caused by vibrations at
their natural frequency. Therefore, AM cellular structures designed
via topology optimization have a great opportunity of making an
impact in vibration and control engineering.

Since the design optimization of variable-density cellular
structures for static problem (stress and compliance) has been suc-
cessfully applied [27,28], the key issues we aim to resolve now is
whether the homogenized model for cellular structure employed
in the proposed design optimization method is valid for dynam-
ical design problems. To demonstrate its validity, both detailed
finite element analysis and dynamical experiments on the opti-
mized structure will be carried out, and the results will be compared
with solution obtained from the homogenized model. The optimal
design cellular structure can be easily realized by using AM in order
to conduct the experiment.

This paper aims to establish an efficient computational method
for optimizing the internal topology of variable-density cellular
structures to maximize the fundamental frequency. The paper is
organized as follows: Section 2 gives a brief introduction of the
whole design method while Sec. 3 presents a method that could
solve optimization problems with simple or multiple frequencies
[29,30]. In Section 4, we present the homogenization of the hon-
eycomb structure in order to obtain a relationship between its
effective mechanical relationship and the relative density. Section
5 discusses how reconstruction of the honeycomb structure is per-
formed once the optimized relative density distribution is obtained.
In Section 6, design method was performed on a thin plate. The per-
formance of the whole design method is compared with detailed
finite element analysis and modal testing in Section 7 and 8. Con-
clusion will be given in Section 9.

2. Overview of design method

As illustrated in Fig. 1, the proposed cellular structure design
method consists of three steps: (i) homogenization, (ii) optimiza-
tion and (iii) reconstruction. To demonstrate the proposed method,
we choose to optimize the design of a honeycomb structure in a
simple cantilever plate. In the homogenization step, scaling laws
(which represent the relations between the elastic properties of
the cellular structure and its relative density) are obtained through
conventional computational homogenization [23]. During homog-
enization (Fig. 1(a)), the relative density of the cellular structure is
varied by changing the hole size of honeycomb, and finite element
analysis (FEA) is carried out to determine the elastic constants for
each relative density. The scaling laws obtained are then directly
employed in a standard topology optimization algorithm to obtain
the optimal relative density distribution for the frequency opti-
mization problem at hand (Fig. 1(b)). The actual cellular structure
is reconstructed from the optimized relative density distribution
through using a relationship between the relative density and hole
size of the honeycomb (Fig. 1(c)). More details for each of these
steps will be elaborated in the following sections.

3. Optimization method for eigenfrequency problem

The eigenfrequency maximization problem in the finite element
(FE) framework takes the following mathematical form:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max  ωj =
√
uT
j
Kuj

uT
j
Muj

st.

{ ∑
�eVe − V∗ ≤ 0

0 ≤ �min ≤ �e ≤ �max ≤ 1

(1)

with the first equation arising from the dynamic eigenvalue prob-
lem:

Kuj = ω2
j Muj, j = 1, . . .,  n (2)

where K and M are the stiffness and mass matrices of the structure,
respectively, while ωj and uj are the jth eigenfrequency and cor-
responding eigenvector. Meanwhile, �e and Ve in Eq. (1) represent
the relative density and volume of element e, respectively. The first
constraint in the equation means the volume fraction must be no
less than the volume constraint V*. The second constraint indicates
that the relative density is bounded by the minimum and maximum
relative densities, � min and �max.

The optimization problem in Eq. (1) can be solved by a number
of different methods such as the MMA  method, which is based on
a special type of convex approximation where sensitivity analysis
becomes a key part of deriving the specific optimization algorithm.
Usually, sensitivity could be obtained by taking derivative directly,
but sensitivity analysis may  fail to converge for vibration problems
involving structures having geometric symmetries [31,32]. This is
because there may  be repeated eigenvalues (i.e. distinct modes at
the same natural frequency) in the problem. For repeated eigen-
value problems, assume that one of the natural frequencies ω has
multiplicity N:

ω = ωj, j = n· · ·n + N (3)

Unlike simple eigenvalue problems, sensitivity analyses for
repeated eigenvalues cannot be obtained directly as they are non-
differentiable with respect to the design variable in the common
mathematical sense [31,32]. According to Seyranian [33,34], this
difficulty can be overcome by utilizing perturbation analysis in the
sensitivity analysis [35], which leads to the following natural fre-
quency maximization problem written in terms of the change in
relative density and frequency, ��e and �ωj

2, respectively [35]:⎧⎪⎪⎪⎪⎪⎪⎪⎨
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where  ̌ is the new bound variable and ısk is the Kronecker delta,
while fsk are generalized gradients for the sensitivity analysis of the
optimization problem in Eq. (4):

fsk ≡ ˚T
(
K

′
�e − ω2

j M
′
�e

)
˚, (s, k = n, · · ·,  n + N − 1) (5)

where � consists of the eigenvector associated with the N-fold
eigenvalue. If only simple case is considered and no repeated fre-
quency shows up, � would be the corresponding eigenvector. In
this case, the gradient obtained using Eq. (5) will be identical to
that in traditional MMA  method. K’�e and M’�e denote the partial
derivatives of the stiffness and mass matrices with respect to the
design parameter �e. Compared with the standard problem in Eq.
(1) in which the only design parameter is �e, the new unknowns

dx.doi.org/10.1016/j.addma.2017.10.001


Download English Version:

https://daneshyari.com/en/article/7205956

Download Persian Version:

https://daneshyari.com/article/7205956

Daneshyari.com

https://daneshyari.com/en/article/7205956
https://daneshyari.com/article/7205956
https://daneshyari.com

