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a  b  s  t  r  a  c  t

Additive  manufacturing  (AM)  is  emerging  as  a  promising  technology  to  fabricate  cost-effective,  cus-
tomized  functional  parts. Designing  such  functional,  i.e.,  load  bearing,  parts  can  be  challenging  and  time
consuming  where  the goal  is to balance  performance  and  material  usage.  Topology  optimization  (TO)  is  a
powerful  design  method  which  can  complement  AM  by  automating  the  design  process.  However,  for  TO
to be  a useful  methodology,  the  underlying  mathematical  model  must  be carefully  constructed.  Specifi-
cally, it  is well  established  that  parts  fabricated  through  some  AM technologies,  such  as fused  deposition
modeling  (FDM),  exhibit  behavioral  anisotropicity.  This  induced  anisotropy  can  have  a  negative  impact
on  functionality  of the  part, and must  be  considered.  To  the  best  of  our knowledge,  a robust  TO  method
to  handle  anisotropy  has  not  been  proposed.  In  the present  work,  a strength-based  topology  optimiza-
tion  method  for structures  with  anisotropic  materials  is  presented.  More  specifically,  we propose  a  new
topological  sensitivity  formulation  based  on strength  ratio  of  non-homogeneous  failure  criteria,  such
as  Tsai-Wu.  Implementation  details  are  discussed  throughout  the  paper,  and  the  effectiveness  of  the
proposed  method  is demonstrated  through  numerical  and  experimental  tests.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Additive manufacturing (AM) is becoming increasingly popu-
lar for fabricating prototypes, and customized production parts.
Furthermore, AM is well-suited for small-batch production and on-
spot fabrication where transporting built parts is expensive or even
impossible. Currently, the most accessible AM technology is Fused
Deposition modeling (FDM) where material is extruded from a noz-
zle, and the part is built layer by layer. FDM is fairly robust with
respect to build scale and material [1]. This, along with other advan-
tages such as ease of use, portability, affordability, and safety make
FDM very promising in producing functional parts in applications
such as:

a) Large-scale printing (cars and houses) [1,2]
b) Biomedical customized parts [3]
c) Electronics-embedded designs, e.g. Fig. 1 [4]
d) Printing in hostile places, e.g. space missions [5]

Topology optimization (TO) [6–8] is used at early stages of
design to automatically reduce weight and material usage while
satisfying constraints on performance. AM and TO complement
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each other in that organic and complex designs generated through
TO can be manufactured through AM technologies. On the other
hand, the cost of AM parts increase significantly with material
usage. Thus optimizing designs can be crucial in saving material
usage, build time, and post-process time [9].

However, there are certain challenges in TO for AM which
need to be addressed before the two  fields can be seamlessly
integrated. Material anisotropy and weakness along build direc-
tion, especially in FDM, is an important consideration. This issue
becomes more critical when the part is functional and has to
satisfy strength-related constraint. There are mainly two  types
of anisotropy, namely 1) intrinsic e.g. composites and 2) process
induced. Intrinsic anisotropy is often favorable since it can provide
more freedom through intentionally creating directional prefer-
ence in behavior. On the other hand, process-induced anisotropy
is the result of process limitations and is often unfavorable. In
this paper, we focus on addressing material anisotropy induced
throughout FDM process due to lack of interlayer fusion as illus-
trated in Fig. 2. Note that anisotropy in FDM could manifests itself
in two ways: 1) anisotropic constitutive properties relating stress
and strain, and 2) directional strengths. However, current experi-
mental results suggest that in some cases (see Section 4), printed
parts exhibit isotropic constitutive properties [10]. The focus of this
paper is on strength anisotropy.

In Section 2 we will review literature on stress-constrained TO
for both isotropic (2.1) and anisotropic (2.2) materials. In Section
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Fig. 1. FDM printed functional quadcopter. Printed via Voxel8 with embedded elec-
tronics and endures structural loading [4].

Fig. 2. Micro fractographs of 3D printed samples using FDM. Different raster orien-
tations plays and important role in mechanical behavior of parts [11].

3 we will describe the proposed method and define the strength-
based TO problem (3.1), perform sensitivity analysis (3.2 and 3.3),
and present the proposed optimization algorithm (3.4). Finally, in
Section 4 we demonstrate the effectiveness of the proposed method
through numerical and experimental results.

2. Literature review

A typical TO problem can be posed as follows: given an initial
design space D, we want to find an optimal topology that minimizes
an objective while satisfying several constraints,

minimize
�⊂D

f (�, u)

gi ≤ 0 i = 1, ..., N

subject to

Ku = f

(1)

where:

D : Design space

 ̋ : Optimized design

f : Objective

gi : Constraints : volume, displacement,...

u : Displacement vector

K : Stiffness matrix

f : External force vector

(2)

Perhaps the most common objective is compliance for which the
TO is fairly straight forward [12]. However, in order to design func-
tional parts, we must consider minimizing stress where sensitivity
analysis can be quite challenging due to locality and non-linearity of
stress with respect to design variables. The former results in a huge
number of constraints for even moderately complex problems, and
the latter affects the convergence of the optimization process. Due
to these challenges, there have been fewer attempts focusing on
strength optimization compared to stiffness, and even less using
anisotropic material properties.

2.1. Strength optimization for isotropic materials

There are numerous failure criteria that have been developed
for isotropic materials over the years; the most common ones are
based on maximum principal stress by Rankine, maximum princi-
pal strain by St. Venant, total strain energy by Beltrami, maximum
shear stress by Tresca, and octahedral shear stress by von Mises.
Among these, Rankine is best suited for brittle materials and von-
Mises agrees best with ductile materials [13].

Earlier attempts towards producing strength-based optimum
structural designs were mainly focused on shape optimization
[14,15] and topology optimization of trusses [16]. It was believed
by many [17–20] that the optimal design might be an isolated or
singular point in the design space. For instance for truss optimiza-
tion, as was  shown by Kirsch [19], a singularity phenomenon occurs
as the cross-section of a bar reaches its lower bound of zero. This, as
explained later by Cheng and Jiang [21], was due to discontinuity
of the stress function and the fact that the constraint function of
the optimization problem becomes undefined. Cheng and Guo  [22]
proposed an ε-relaxation method as a solution to this issue, where
the singular optimum design was eliminated from the design space;
consequently, sizing and topology optimization could be unified in
a single framework (also see [23,24]).

Since the development of homogenization method by Bendsøe
and Kikuchi [25] and Solid Isotropic Material with Penalization
(SIMP) method by Bendsøe [26], many different strategies have
been proposed for stress-based TO. For instance, Xie and Steven [27]
proposed an evolutionary method, in which elements with lower
von-Mises stress are gradually rejected. This approach could lead
to sub-optimal designs, due to locality nature of stress [28].

Perhaps the most popular TO method is SIMP, where a
pseudo-density variable � (0 ≤ � ≤ 1) is used to describe mate-
rial distribution. Yang and Chen [29] used a global stress measure
such as Kreisselmeier-Steinhauser or Park-Kikuchi as the objective
function. In particular, their objective was a weighted average of
compliance and the p-norm of a stress measure.

It is well-known that as � approaches 0, the stress values can
become singular, which results in the same type of singularity
phenomenon discussed above. In order to overcome this prob-
lem, Duysinx and Bendsøe [30], proposed an ε-relaxation scheme
for SIMP. Bruggi and Venini [31] and Bruggi [32] proposed an
alternative qp-approach to remedy the singularity problem, which
required less computational effort. Le et al. [33] proposed a formu-
lation based on normalized stress p-norm and a density filter to
control length scale. París et al. [34], proposed a TO method consid-
ering local and global stress constraints. They later extended their
work in [35] by developing block aggregated approach, where one
stress constraint was  assigned to a group of elements. As was shown
in [30], TO with a global stress constraint can be too coarse and
might yield results similar to those of stiffness optimization. The
clustered approach can avoid stress concentrations and give better
designs while not being too expensive. Along these lines, in [36],
the number of stress constraints are reduced by clustering several
stress evaluation points into groups.

The level-set (LS) method [7,37,38] is another popular approach
for TO, where the boundaries of the design are defined as zero level
sets of a scalar level-set function. In the conventional form, the
Hamilton-Jacobi partial differential equations have to be solved to
update design boundaries.

In [39], Miegroet and Duysinx proposed a LS method to min-
imize the stress concentration of 2D fillets. The approach uses
X-FEM, which enriches classical finite element method (FEM) with
several discontinuous shape functions. Svanberg and Werme  [40],
presented two sequential integer programming methods, where
a sequence of linear or quadratic sub-problems with decreasing
mesh sizes are solved and on the fine level. A LS method was  pro-
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