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A B S T R A C T

In this paper we demonstrate the influence of the pore pressure on the development of a hydraulically-driven
fracture in a poroelastic medium. We present a novel numerical model for propagation of a planar hydraulic
fracture and prove its correctness by the analysis of the numerical convergence and by the comparison with
known solutions. The advantage of the algorithm is that it does not require distinguishing of the fracture's tips
and reconstruction of the numerical mesh according to the fracture propagation. Next, we perform a thorough
analysis of the interplay of fluid filtration and redistribution of stresses near the fracture. We demonstrate that
the fracture length decreases with the increase of the Biot's number (the parameter that determines the con-
tribution of the pore pressure to the stress) and explain this effect by analysing the near-fracture pore pressure,
rock deformation and stresses. We conclude that the correct account for the fluid exchange between the fracture
and the rock should be based not only on physical parameters of the rock and fluid, but also on the analysis of
stresses near the fracture.

1. Introduction

Mathematical modelling of hydraulically-driven fractures is a highly
demanded subject in modern technologies for enhancement of reservoir
permeability in hydrocarbon production as well as in geophysical
problems related, for instance, to the development of magmatic dykes.
Recent progress in the modelling of hydraulic fracture dynamics is
described in the review papers1,2 and citations therein. The early de-
vised but currently widely used models by Khristianovich, Zheltov,
Geertsma, and de Klerk (KGD)3,4 and by Perkins, Kern and Nordgen
(PKN)5,6 assume that the fracture propagates in infinite elastic medium
and the fluid exchange between the fracture and the porous reservoir is
modelled only as a fracturing fluid loss (leakoff) according to Carter's
formula7 which proposes that the leakoff is inversely proportional to
the square root of the exposure time. More advanced models of the
leakoff suppose computation of the pore pressure around the fracture
by solving the piezoconduction equation8 although still do not con-
sidering the influence of the pore fluid on stresses.

Theoretical study of the impact of the pore pressure on the dis-
tribution of stresses near the fracture was carried out in many papers, a
detailed review can be found in the Introduction of the dissertation by
Y. Yuan.9 In particular, the additional stiffness of the rock due to the
pressure in the vicinity of the fracture was treated as the backstress.10,11

It was noted that the wellbore fluid pressure needed to open the frac-
ture considerably rises due to the backstress. The same effect leads to
the overestimation of the minifrac tests for the in situ minimal principal
stress.12,13 The mentioned facts indicate that the proper account for the
action of the pore pressure and the proper modelling of the fluid ex-
change between the fracture and the porous reservoir is principal for
the correct description of the fracture dynamics.

In our paper we extend this observation by performing a thorough
analysis of the mutual influence of the pore fluid filtration and the
stresses distribution. The analysis is based on the novel numerical
model for propagation of a hydraulic fracture in a poroelastic medium,
based on Biot's equations.20 The brief outline of the model is given in
our conference paper.14 Here we provide the complete description and
verification of the model, and do the numerical simulations. The nu-
merical solution of the problem is carried out by the finite element
method with the use of a modification of the algorithm suggested in.15

We use an approach of modelling free of explicit tracking of the frac-
ture's tip similar to the one used in.16 The advantage of our model is
that we do not need to rebuild the computational mesh according to
propagation of the fracture, which is typical for problems of this type.
Also it allows to incorporate all “fracture propagation — fluid flow”
coupling in a single weak formulation, which is ready to be solved
numerically using standard methods. The rock failure criteria is
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modelled using the cohesive zone model initially proposed by Bare-
nblatt17 and Dugdale.18 This model allows us to eliminate the stress
singularity at the fracture's tip as well as to integrate the computation of
the failure criteria into the numerical algorithm. The correctness of the
model is checked by the analysis of the numerical convergence of the
algorithm and by comparison with analytical and numerical solutions
presented in.19 In all observed cases we have a satisfactory coincidence
of the solutions.

The constructed model is used for the analysis of the influence of the
pore pressure on the fracture dynamics. We demonstrate that the dy-
namics is governed by the two factors: the rate of the medium dis-
placement that modifies the filtration, and by the backstress that sig-
nificantly increases the pressure inside the fracture. For the relatively
high rock permeability these two factors notably increase the leakoff
and hence, decrease the length of the fracture. The demonstrated effect
is dumped by high reservoir storage coefficient or low rock perme-
ability.

2. Mathematical formulation of the problem

Let us consider a vertical planar fracture of fixed height H, propa-
gating along the straight line denoted as x-axis (Fig. 1a). We direct z-
axis upwards and y-axis perpendicular to the plane of the fracture
propagation. We suppose that fracture's aperture is constant along the
vertical coordinate z, so the plane strain approximation is applicable.
This implies, that we can limit ourselves to observing only the central
cross-section =z 0 of the fracture.

2.1. Equations for the poroelastic reservoir

The poroelastic medium is characterized by its porosity ϕ and per-
meability k x( )r , with the solid phase displacement tu x( , ), and the pore
pressure p t x( , ). Pores are saturated with a single-phase Newtonian
fluid with the effective viscosity ηr . We make use of the linear Darcy law
for the fluid velocity = − ∇k η pq ( / )r r . It is supposed that the fluid fil-
trating from the fracture into the reservoir has the same viscosity as the
pore fluid. However, the Newtonian fluid within the fracture has dif-
ferent viscosity ηf . This corresponds to the normal situation in hydraulic
fracturing when the fracturing fluid is a high-viscous gel and only its
low-viscous base fluid is filtrated into the reservoir. However, for the
sake of simplicity the filter-cake influence is not taken into account. We
restrict ourselves to modelling the initial pad stage of hydraulic frac-
turing, when no proppant is added into the fluid. Thus, the transport of
proppant along the fracture is not considered.

For the generality, the reservoir is initially subjected to a prestress
with the stress tensor τ x y( , )0 . Since we observe only straight fractures,
tensor τ0 satisfies symmetry conditions relative to x-axis.

The governing equations of the quasi-static poroelasticity model are
the following20:
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Here E u( ) is the Cauchy's strain tensor
E = ∂ ∂ + ∂ ∂ =u x u x i ju2 ( ) / / ( , 1, 2)ij i j j i , α is the Biot coefficient, λ x( )
and μ x( ) are elasticity moduli, I is the identity tensor. The storativity Sε

reflects the dependence of the Lagrangian porosity ϕ on E=ϵ tr and p as
in20:
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is the bulk modulus, ϕ0 is the initial porosity. Due to

the plane strain approximation, the solid phase displacement vector
= =u u u vu ( , ) ( , )1 2 is two-dimensional, and all vector operations are

also taken in 2D space of independent variables = =x x x yx ( , ) ( , )1 2 .
Symmetry of the problem with respect toOx-axis allows solving Eqs.

(1) in domain = ≤ ≤ ≤Ω x y x R y R{( , ): | | , 0 } as shown in Fig. 1b.
Over the outer boundary = ∂ ∩ >Γ Ω y{ 0}R the confining far-field

stress ∞σ is applied and the constant pore pressure = ∞p p is prescribed:
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Henceforth n and s denotes the outer normal and tangential unit
vectors to the boundary of the domain Ω; the summation over the re-
peating indices is implied. We restrict ourselves to the case
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2 2 1 1 , where ∞σmax and ∞σmin are the max-

imal and minimal principal in situ stresses, respectively. Moreover, we
assume that the prestress τ0 satisfy the same boundary condition:
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In order to close the model it is supplemented with the initial data at

some moment t0:
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2.2. Equations for the hydraulic fracture

The line =y 0 is divided into the part
= − ≤ ≤ =Γ L t x L t y{ ( ) ( ), 0}f rℓ occupied by the fracture, and the re-

maining part = − < < − = ⋃ < < =Γ R x L t y L t x R y{ ( ), 0} { ( ) , 0}s rℓ .
Outside the fracture on Γs the symmetry conditions (see15) are satisfied:
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With p t x( , )f standing for the fluid pressure inside the fracture and
σcoh denoting the cohesive forces near the fracture's tips (explained
below), the force balance over the fracture's wall yields
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Here we neglect the tangential stress due to the fluid friction on the
fracture's walls in comparison with the normal stress.

The fluid flow in the fracture is governed by the mass conservation
law complemented with the Poiseuille formula:
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Here w is a half of the fracture aperture, q is the fluid velocity in
x-direction. No fluid lag is assumed at the fracture's tip.

Fig. 1. Planar vertical hydraulic fracture in a poroelastic
medium: (a) 3d view; (b) horizontal cross-section by plane

=z 0.
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