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A B S T R A C T

In this paper, a weakly compressible Lattice Boltzmann code is coupled with a realistic shape Discrete Element
algorithm to create a simulation software to estimate the airspeed happening at airblast events in three di-
mensions. In an airblast event, air is compressed between falling rocks and the muckpile when the block caving
method is used, creating potential hazardous air gusts compromising the safety of personnel and equipment. This
work shows how the coupled code is capable of reproducing the key physical layers involved in this phenomenon
such as the airspeeds attained by falling bodies in funnel geometries. After some validation examples, the code is
used to evaluate the effect of the underground mine geometrical parameters on the potential airspeed. These
examples show the potential of the software to be used by mining engineers to estimate accurately the impact of
an airblast event.

1. Introduction

Airblast in block caving situations is a very dangerous situation with
potential loss of life for operators and damage to mining equipment.1

Airblasts occur when air pockets are present within the material that is
currently being extracted through the drawpoints (Fig. 1).2 As the
material close to the drawpoints (defined as the muck-pile) becomes
stagnant, the block falling at the top of the air gap will compress the air.
Air will leave the empty space through any potential escape way at very
high velocities, potentially endangering personnel and equipment.3 One
fatal example of an airblast accident happened at the Northparkes mine
in Australia on November 24th, 1999, where four miners lost their
lives.4

Airblast prevention has mostly been carried out at the site level by
the installation of air obstructing wall structures to reduce the potential
rise in airspeed and overpressure.5 Actions aimed to mitigate effects of a
potential airblast accident are difficult to apply at the planning stage
due to the lack of appropriate modelling tools to simulate the problem.
Modelling approaches have mostly focused on piston models, where the
gas pressure is obtained from the adiabatic compression of an ideal
gas.4,6 This has the advantage of being a fast estimate for airspeed and
overpressure but it loses the possibility of adding local features to the
caving model, such as observation ducts and drawpoints. More

sophisticated models use machine learning techniques7 to analyse and
find patterns using global datasets found during airblast monitoring.
One promising approach is to use the Discrete Element Method (DEM)8

to model the rocks being extracted interacting with a Computational
Fluid Dynamics (CFD) method representing the air to model the whole
process. Recently this idea was used for the first time9 to obtain im-
portant parameters for the air resistance of the muckpile. This study
was carried out with circular elements in 2D using the PFC2D com-
mercial code coupled with an incompressible fluid simulation code.

The present study presents a similar approach using DEM, but going
a step further by simulating the whole process in 3D including a com-
pressible gas characterized by the air sound speed and particles with
more realistic shapes. Furthermore, it will include other cave char-
acteristics such as a number of draw-points and observation ducts. The
CFD method of choice is the Lattice Boltzmann Method (LBM), which as
will be shown can deal with weakly compressible gases and is easily
coupled with the DEM.10,11

The paper is structured as follows: Section 2 describes DEM-LBM
coupling method in a succinct form and references are given for the
readers interested in the details. Section 3 presents a series of validation
examples including an experimental case. In Section 4 a parametric
study is shown to illustrate the potential of the method to see the effect
of different site parameters on a block caving situation. Finally, in
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Section 5 some conclusions and projections of the current work are
presented.

2. The method

The simulation approach was introduced by the authors previously
in Ref. 11 The fundamentals are based on the spheropolyhedra ap-
proach to model contact collision between DEM particles and how it
can also be used to simplify the coupling with the LBM code. Here, a
brief introduction to the method is included.

LBM is a grid based method solving the discrete Boltzmann equa-
tion. It divides the space in a cubic grid of side δx .12 The velocity space
is also discretized by a set of velocities →ei as seen in Fig. 2. A set of
functions →xf ( )i is assigned to the cell centered at →x . These functions
represent the density of particles of fluid propagating in one of the
different discrete directions. The macroscopic fluid density ρ and ve-
locity →u are obtained from the following additions over the velocity
space,
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The discrete form of the Boltzmann equation governs the evolution
of the fi set. This equation contains both the dynamics of collision of
particles as well as the transmission of information by streaming at each
time step δt ,
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with Bn a volume occupation function which is important for moving
boundaries as the ones presented when coupled with DEM, τ is a
characteristic dimensionless relaxation time related to the fluid visc-
osity, fi

eq is an equilibrium function which should be reached at equi-
librium conditions and finally Ωi

s is a collision term representing the
momentum exchange with the moving boundary.

Calculating Bn is important to determine to correct momentum
exchange with the DEM particles. In11 it is shown how the form,
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which depends on the fraction of the cell volume occupied by the DEM
particle εn is suitable. For the momentum exchange term (Ωi

s) the fol-
lowing form is chosen,
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where ′i is the direction opposite to the −i th direction and →vp is the
velocity of the DEM particle at that point. With these two terms cal-
culated, the force
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and the torque over the DEM particle,
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are similarly calculated by summing the individual contributions over
all the occupied cells where >ε 0n .

As introduced by Chen and Doolen,13 to recover Navier Stokes (NS)
equations, the equilibrium function must be,
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where =C δ δ/x t . This version of LBM allows small changes in density
and in fact can be used to model compressible gases as long as low
Mach numbers are reached. In fact, the form for the equilibrium dis-
tribution will give a well defined relation for the fluid pressure p as a
function of the density ρ in the NS equation,

=p C ρ
3

,
2

(8)

where the factor 3 comes from the discretization of 15 velocities shown
in Fig. 2. This implies that the speed of sound =Cs C/ 3 . Furthermore,
it will be shown that it is practical to use this equation for situations
where the gas is compressed by working with changes in pressure

=p Cs ρΔ Δ2 , where the changes are relative to an equilibrium pressure
and density values. By this equation, it can be seen that once δx is fixed
by the desired resolution, then the time step δt must be chosen to obtain
a realistic speed of sound. In this study =Cs m s340 / which in some
cases imposed small values for δt making some simulations challenging
in terms of computational time.

One last property of the fluid is the kinetic viscosity ν related to the
relaxation time τ by
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Once δx and δt are defined by the speed of sound, the ν can only be
controlled by the value of τ . However, it is a well known fact that for
low viscosities ∼τ 1/2 and the method becomes unstable. One very
successful technique to avoid this instability and obtain an accurate
response is to use the Large Eddy Simulation scheme within LBM.14 In it
a second viscosity is added to the one obtained from Eq. (9) to account

Fig. 1. Airblast hazard. In a block caving mining, the rocks fall down through
the drawpoints. In the case there are air gaps between the falling block and the
muckpile, the air will be compressed and released through any potential outlet
at very high speeds, potentially endangering personnel and equipment.

Fig. 2. The LBM cell of the D3Q15 showing the direction of each one of the 15
discrete velocities.
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