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A B S T R A C T

In situ stress is an important parameter in rock mechanics, but localised measurements often display significant
variability; for meaningful analyses it is essential that such variability is appropriately quantified. Among many
statistics, dispersion, which denotes how scattered or spread out a data group is, is an effective tool to quantify
the amount of variability. However, dispersion measures are commonly only used for scalar and vector data, and
it is not yet clear what robust scalar-valued measures of stress dispersion – i.e. measures that are faithful to the
tensorial nature of stress – are available. Here, using stress tensors referred to a common Cartesian coordinate
system, we consider several dispersion measures, namely, Euclidean dispersion (a tensor version of standard
deviation), and the three widely used multivariate dispersions of total variation, generalised variance and ef-
fective variance, for scalar-valued quantification of stress variability and to improve the existing related work.
We compare these measures, show how they are linked to the covariance matrix of tensor components, and
derive their invariance with respect to change of coordinate system. Through the use of synthetic two-dimen-
sional stress data we demonstrate that these measures can effectively characterise the dispersion of stress data.
Further analysis of randomly generated three-dimensional stress data reveals that generalised variance and
effective variance, which consider both variances of, and covariances between, tensor components, are more
effective than Euclidean dispersion and total variation which ignore covariances. The transformational in-
variance of generalised variance and effective variance allows these measures to be applied in any convenient
coordinate system.

1. Introduction

In situ stress is an important parameter for a wide range of en-
deavours in rock mechanics, including rock engineering design, hy-
draulic fracturing analysis, rock mass permeability and evaluation of
earthquake potential.1–5 The stress in rock often displays significant
variability,4,6–9 and as an example Fig. 1 shows the dramatic change in
terms of both principal stress magnitude and orientation that can be
observed in a small zone.7 The stress variability may be influenced by
various factors such as intrinsic variation caused by the inherent
variability of discontinuities, anisotropy and heterogeneity of a frac-
tured rock mass, as well as extrinsic errors related to stress acquisition
methods. The acquisition error can be attributed to many aspects such
as poor instrument installation, inaccurate estimation of mechanical
parameters which are used in stress calculation, precision of the ac-
quisition instruments, as well as the assumptions and constraints that
have been made regarding the principal stresses in methods like hy-
draulic fracturing and borehole breakout analysis.1,10,11 In addition,
since stress may vary with respect to space (e.g. burial depth) and time,
spatial variability and temporal variability also exist.1 Therefore, the

variability of stress is complicated in nature and robust statistical ap-
proaches are necessary and prerequisite to fully understand the com-
plexity of stress variability. However, currently, such robust statistical
approaches for stress variability characterisation are still lacking.

To alleviate the complexity and make the investigation of stress
variability more realistic, assumptions have to be and have already
been made,1 and based on which, many examples of direct statistical
processing of stress data can be found in the rock mechanics litera-
ture.6,12–25 For example, it is common to assume that the analysed
stresses were obtained within a space and time span that are sufficiently
short such that their spatial and temporal variability can be ignored,
and the measured stress data are deemed to be practically accurate.
Based on these assumptions, several statistical approaches for stress
data processing, such as mean stress calculation, statistical distribution
model and confidence interval characterisation, have been devel-
oped.12–19 However, in rock mechanics, assessment of stress variability
is customarily undertaken by processing principal stress magnitude and
orientation separately using scalar- or vector-related statistics (e.g.
Fig. 2). This processing effectively decomposes the second order stress
tensor into scalar (principal stress magnitudes) and vector (principal
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stress orientations) components, to which classical statistics20 and di-
rectional statistics,21 respectively, are applied. Examples of this ap-
proach are widespread in the literature.6,22–34 All these customary
methods not only violate the tensorial nature of stress, but also yield
unreasonable results.16,35–37

Among many statistics, dispersion (also called scatter, denoting how
spread out is a data group) is an effective tool to quantify variability,
and it is commonly measured by standard deviation.20(p.54) However,
standard deviation is only defined for scalar and vector data, and a
robust approach to calculating the analogue of standard deviation for
stress data is still not clear. This is mainly because of the tensorial
nature of stress, which renders classical statistics inapplicable.35,38

Particularly, for customary applications, when it comes to stress dis-
persion, one may intuitively calculate the dispersion of principal stress
magnitude and orientation separately and hence obtain six dispersions.
However, neither the six dispersions individually nor any combination
of them gives a sense of the overall stress dispersion. A particular effect
of this is that it is currently difficult to quantitatively evaluate overall
stress variability, and impossible to quantitatively compare the varia-
bility of stress at different engineering sites. To overcome this shortfall
and improve the existing related working in rock me-
chanics,16,17,19,39,40 based on the above-mentioned assumptions, here
we present and examine several dispersion measure approaches, and
hence propose a scalar-valued stress dispersion measure for stress
variability characterisation.

Rather than customary approaches that analyse principal stress
magnitude and orientation separately, in order to remain faithful to the
tensorial nature of stress, stress variability analysis should be conducted
on the basis of tensor components obtained in a common Cartesian
coordinate system. This has been advocated previously by many
others.16–19,39–43 Several researchers have followed this technique in
stress dispersion related calculations.17,19,39,40,42 For example, as dis-
persion is generally determined relative to the mean, it is necessary to
first calculate the mean stress tensor as the mean of the stress tensors
referred to a common frame. This approach first takes a group of n
stress measurements in a global x-y-z Cartesian coordinate system, the
ith stress tensor Si of which is given by
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where σ and τ are the normal and shear tensor components, respec-
tively. The mean stress tensor is then42
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where SE denotes the Euclidean mean stress tensor,44 and σ and τ de-
note the corresponding mean tensor components. A number of reports
exist in the literature in which this Euclidean mean has been used as a
mean stress tensor.16,17,19,39–41

Based on Eq. (2), a so-called stress variance tensor may be calcu-
lated.17,19,39,40 After obtaining the mean stress tensor, a new coordinate
system (say, X-Y-Z) is established that coincides with the principal di-
rections of the mean tensor SE, and all the original stress tensors
transformed into this new coordinate system. Using the variance
function, = ∑ −− =x x xvar( ) ( )n i

n
i

1
1 1

2, and recognising that
= = =τ τ τ 0XY YZ ZX , the variance tensor is then calculated as

Fig. 1. Dramatic stress change in terms of both principal stress magnitude and
orientation observed near a fault (from Obara & Sugawara7).

(a) Distribution of principal stress magnitudes

140

120

100

C
ou

nt

Magnitude (MPa)

80

60

40

20

0
0 20 40 60

σ3

σ2

σ1

N

σ3
σ2

σ1

S

(b) Contouring of principal stress orientations

Fig. 2. Customary analyses of stress examine principal stress magnitude and
orientation separately using classical statistics and directional statistics, re-
spectively (after Brady & Brown34).
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