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A B S T R A C T

Flexural toppling is one of the main failure modes of natural and manmade anti-dip layered rock slopes. Based on
cantilever slab tensile theory, the failure mechanism of flexural toppling was analyzed. A toppling slope is
divided into three parts: the stability, tensile and shear zones. By considering this failure mechanism, a new
stability analysis method for slopes against flexural toppling failure is proposed using equilibrium theory. In
addition, a sensitivity analysis is performed to investigate the locations of possible failure surfaces and zones as
well as changes in the stability of anti-dip rock slopes under different conditions. The results show that the
positions of the inter-column forces have almost no effect on the stability factor but affect the areas of the tensile
zone and the shear zone. The angle of the most dangerous potential failure surface increases with increasing dip
angle and slope height, whereas the stability factor is negatively correlated with the dip angle and slope height
but is positively correlated with the layer thickness. The failure mode is essentially flexural toppling when the
layer thickness is small, but the failure mode gradually transitions to shear-sliding with increasing layer
thickness. Finally, a real case study is analyzed using this method, and the calculated results are consistent with
the actual conditions.

1. Introduction

Toppling failures occur in rock masses containing a set of dis-
continuities that strike nearly parallel to the slope and dip into the
slope, and these failures have been observed in both natural and
manmade slopes. The term “toppling failure”, as applied to rock slopes,
was first suggested by Ashby.1 Goodman and Bray2 summarized top-
pling failures as having three basic modes: flexural, block and block-
flexure toppling.

Based on the limit equilibrium method, a “step-by-step” approach
was proposed by Goodman and Bray2 for the analysis of block toppling.
This approach was modified by Cruden3 and later improved by Aydan
et al.4 and Kliche.5 Zanbak6 constructed a set of diagrams to calculate
the required support forces. Following Goodman and Bray's solution, a
general analytical solution that assumes that the blocks have an in-
finitesimal thickness was developed.7–9 Aydan and Kawamoto10 first
presented a theoretical method based on the limit equilibrium method
and applied the bending theory of cantilever beams to analyze flexural
toppling failures. Based on the principle of compatibility equations,
Amini et al.11 presented a new method for analyzing and computing the
safety factor for flexural toppling failure. Amini et al.12 presented a new
analytical approach for block-flexure toppling and developed a

computer code for stability analysis and assessment. Tatone BSA and
Grasselli13 developed a Monte Carlo simulation procedure for the
probabilistic analysis of block toppling and described its implementa-
tion in a spreadsheet-based program (ROCKTOPPLE).

Physical and numerical modeling is also used to understand the
mechanisms underlying toppling failures as well as the potential for
stabilizing toppling failures. Physical modeling methods involving base
friction models and tilt tables were popular in the 1970s and early
1980s. Ashby1 utilized base friction models and tilt tables to study the
slipping and toppling mechanisms acting on jointed rock slopes. Bray
and Goodman14 carried out base friction tests and analyzed the corre-
sponding theoretical and experimental results. Recent physical mod-
eling of rock toppling has involved centrifuge modeling. Adhikary
et al.15,16 performed a series of centrifuge experiments to investigate
the mechanism of flexural toppling failure and observed the following:
(1) the basal failure plane extended from the toe of the slope and was
oriented at an angle of 12–20 degrees upward from the normal to the
layers; and (2) the two main failure mechanisms of flexural toppling,
instantaneous and progressive failure, were controlled by the magni-
tude of the joint friction angle. Zhang et al.17 observed in centrifuge
tests that the failure mode did not follow a straight failure plane, as was
proposed by Goodman and Bray.
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Because physical modeling requires considerable time and large
monetary costs, numerical simulation, which is an effective method, is
commonly used to investigate the toppling failure mechanisms of rock
slopes. Since the 1970s, many numerical techniques have been devel-
oped and successfully applied to the modeling of toppling failures.
These techniques include the distinct element method (DEM)18–20 and
the universal distinct element code (UDEC).21–23 Adhikary et al.24–26

developed a finite element model that was based on the Cosserat theory
to investigate the mechanisms of flexural toppling failure. Alzo’ubi
et al.27 used the UDEC damage model (UDEC-DM), which is a numerical
modeling methodology based on a discrete element framework, to in-
vestigate two centrifuge tests carried out by Adhikary et al.25 and Zhang
et al.17 to examine the toppling process.

As described above, many studies have been performed on toppling
failures and have resulted in significant achievements. Block toppling
and flexural toppling are two distinct types of toppling failure mode,
and the stability analysis method proposed by Goodman and Bray2 on
block toppling is not appropriate for flexural toppling. Re-
ference10–12,15,16 have developed a new technique, which consider the
stratified rock slopes as a series of cantilever slabs, to calculate the
stability of flexural toppling. However, the mechanism of flexural top-
pling has not been clarified, especially the location of the failure sur-
face. Therefore, this paper investigates the mechanisms underlying
flexural toppling failure based on cantilever slab theory and the limit
equilibrium method, and presents a new stability calculation method
for flexural toppling failure.

2. The ultimate tensile length of a cantilever slab

Flexural toppling of stratified rock slopes can be considered to in-
volve a series of cantilever slabs and the interacting forces between the
adjacent slabs; a geomechanical model of this is shown in Fig. 1. Under
the influence of external forces, these cantilever slabs deform and even
fail via tensile or shear failure modes. According to the stability and
failure mechanisms, a rock slope subject to flexural toppling is divided
into three parts from the crest to the toe: the stability zone, the tensile
zone and the shear zone. Furthermore, the tensile zone forms earlier
than the shear zone. Employing the column theory from the theory of
elasticity, the absolute value of the minimum normal stress σx at the
base of a column with unit thickness is given as follows:

= −σ M
I

y N
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where y denotes the thickness of the column (m), N denotes the normal
force (kN), M denotes the moment (kNm), I denotes the inertia mod-
ulus (m4), and A denotes the cross-sectional area of the column (m2).

For a cantilever slab with a base inclination of β that is acted on by
gravity, Eq. (1) takes the following explicit form:
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where γ denotes the unit weight of the column (kN), h denotes the
column height (m), and t denotes the column thickness. In the tensile
zone, every cantilever experiences tensile damage at the base of the
column. Considering the stability factor k, the ultimate condition is
expressed as follows:
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where σt denotes the tensile strength of the column. By combining Eqs.
(2) and (3), we obtain the limiting tensile length of the column hlim
under gravity:
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3. Failure mechanism of flexural toppling

Assuming that any one column of the toppling rock slope is first
damaged by tension, its length should be longer than the limiting ten-
sile length calculated using Eq. (4). This column then produces a flex-
ural deformation larger than that of the upper column, which fails
further due to tension if this column is also longer than the limiting
tensile length. In this way, all columns with lengths that are not less
than the limiting tensile length above the first column that was da-
maged by tension also fail due to tension. Then, the column above the
top column that is damaged by tension deforms and separates from the
overlying and underlying columns. There are no interactive forces be-
tween this column and the two adjacent columns, which is also true for
all columns above the column with the limiting tensile length. There-
fore, this column does not fail due to gravity only. In conclusion, the
column with the limiting tensile length above the tensile zone is the
lower boundary of the stability zone.

As shown above, all the columns experiencing tensile failure above
the first column that failed in tension make up a retrogressive failure.
The column immediately below the first column that experienced ten-
sile failure due to gravity and the driving force is very likely to be
damaged by tension; that is, the size of the tensile zone gradually in-
creases until the normal stress is less than the tensile strength of the
base of the column. This tensile region below the first column that
experienced tensile failure is a push failure. Therefore, the tensile zone
is divided into two subzones. The column length at the lower boundary
of the tensile zone is denoted by hx. The region between the lower
boundary of the tensile zone and the toe of the slope is the shear zone.
Based on this discussion, the failure mode of rock slopes that experience
flexural toppling is described in Fig. 2. Furthermore, the size of each
zone along the failure surface is expressed as shown in Fig. 2 and cal-
culated using the following equations.

First, the length of the failure surface behind the base of the longest
column, ldown, and the length of the failure surface ahead of the base of
the longest column, lup, are calculated as follows:
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where ymax indicates the length of the column at the top of the rock
slope, which can be obtained as follows:
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Based on the geometric relationships, we obtain the following
equations:
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(7)Fig. 1. Geomechanical model for flexural toppling failure of rock slopes.
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