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A B S T R A C T

A coupled extended finite element method (XFEM) is presented here for modeling propagation of fluid-driven
fractures in different regimes including toughness- and viscosity-dominated regimes. The extended finite ele-
ment method allows to model growth, and coalescence of arbitrary discontinuities (fractures) without requiring
the mesh to conform to discontinuities nor significant refinement near the fractures. Fluid-driven fractures
propagation is a coupled, nonlinear and non-local problem with moving boundary conditions. The proposed
method is based on the extended finite element method with modifications to incorporate variable stress sin-
gularity at the crack tips for the transition between toughness-dominated and viscosity-dominated regimes.
These modifications consist of enriched functions that are initially inspired by the asymptotic analytical solu-
tions. The standard extended finite element approximation is enriched by adding near tip asymptotic solutions
just for displacements, however the proposed method introduces a consistent enriched function for fluid pressure
calculations close to the fracture tips to catch the singularity. Additionally, a technique is presented to remove
singularity issue for required numerical integrations. Green's functions concept is proposed here to expedite
calculations. To circumvent violation of partition of unity and parasitic terms in the approximation space in-
duced by the blending elements at the edge of the enriched domain, the ramp function is utilized to improve the
convergence rate. Stress intensity factors are calculated using a new contour integral method that can handle
cases with different tip singularities. The proposed technique is verified with the cases that have analytical
solutions. Some examples are presented to show the advantages of this technique in comparison to the regular
XFEM.

1. Introduction

During the last two decades, a gigantic amount of natural gas has
been discovered in low-permeability reservoirs around the world.
Because of the low permeability of these formations and the low con-
ductivity of the natural fracture networks, stimulation techniques such
as hydraulic fracturing are necessary to make economic production
possible.1 The low conductivity of the natural fracture system could be
caused by occluding cements that precipitated during the digenesis
process.2 The fact that natural fractures might be sealed by cements
does not mean that they can be ignored while designing well comple-
tion processes. Cemented natural fractures can still act as weak paths
for fracture growth. Hence, the presence of natural fractures adds more
complexity to the induced fracture geometry, which may make frac-
turing jobs very challenging due to the formation of complex fracture
geometries.3 Nevertheless, even for simpler fracture geometries many
current commercial software packages do not consider coupling

between the rock deformation and fluid flow inside the fracture. To
cover this shortage, the proposed method solves fluid flow and rock
deformation equations at the same time. Modeling complicated fracture
pattern developments is also possible within the context of the method
presented in this paper.

Hydraulic fracturing is a common technique not only for enhancing
hydrocarbon production, but also for improving geothermal energy
extraction.4 It is also widely used for other purposes like hazardous
solid waste disposal,5 measurement of in-situ stresses,6 and fault re-
activation in mining.7 Hydraulic fractures, which are naturally induced
by pressurized fluid in the host rock, are also observed in outcrops as
joints,8 veins,9 and magma-driven dikes.10 Hydraulic fracturing is also
identified as a main mechanism in hydrocarbon migration through low
permeable cap rock.11

A primary difficulty of accurate modeling hydraulic fracturing
problems comes from the coupling of the fluid flow inside the fracture
and rock deformations, which provide the fracture's width. Inaccurate

https://doi.org/10.1016/j.ijrmms.2018.04.012
Received 5 May 2017; Received in revised form 9 February 2018; Accepted 7 April 2018

⁎ Correspondence to: 139 Old Forestry Building, Baton Rouge, LA 70803, USA.
E-mail address: arash.dahi@psu.edu (A. Dahi Taleghani).

International Journal of Rock Mechanics and Mining Sciences 106 (2018) 329–341

Available online 09 May 2018
1365-1609/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/13651609
https://www.elsevier.com/locate/ijrmms
https://doi.org/10.1016/j.ijrmms.2018.04.012
https://doi.org/10.1016/j.ijrmms.2018.04.012
mailto:arash.dahi@psu.edu
https://doi.org/10.1016/j.ijrmms.2018.04.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijrmms.2018.04.012&domain=pdf


calculations can lead to hazardous consequences, for instance, excessive
fluid pressure may lead to creating a cylindrical crack around the
wellbore.12 Unfortunately, analytical solutions for fracture propaga-
tion13 are only limited to simple geometries and limiting assumptions
such as homogenous or isotropic medium. In the general case, modeling
fluid-driven fractures is tremendously difficult even for simple geome-
tries.14 This difficulty is due to moving boundary conditions as a result
of crack tip propagation, non-linearity of the governing equation for
fluid flow in fractures, the high displacement gradient near the fracture
tips, and non-locality of the solution. Non-linearity comes from the fact
that fracture permeability is a cubic function of the fracture width. Non-
locality means that the fracture width at one point is a function of fluid
pressure at another point along the fracture.13

In recent years, there has been a return to analytical solutions to
achieve a better understanding of different fracture propagation re-
gimes. Analytical solutions are limited to very simple planar geometries
in a homogeneous isotropic medium, but they provide insight into
asymptotic behavior of the fluid pressure distribution near the fracture
tips. Analytical solutions have revealed the controlling role of two en-
ergy dissipative processes in impermeable formations: fracturing of
rock (toughness) and dissipation in the fracturing fluid due to friction
(viscosity).

Depending on competition between the dissipative processes, the
singularities at the fracture tips may vary. Adachi15 introduced di-
mensionless toughness ∼K or dimensionless viscosity M as the control-
ling parameter to determine whether fracturing the rock or friction
losses is the primary energy loss mechanism during hydraulic fracture's
propagation
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where ′K and ′μ are material parameters that are defined as
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1/2 and ′ =μ μ12 , ′ = −E E ν/(1 )2 is the plain strain
modulus of elasticity, Q0 is the injection rate, μ is the fluid viscosity, KIc
is the fracture toughness of the rock, E is the Young modulus of the
rock, ν is the Poisson's ratio of the rock. <∼K 1 is represented the
viscosity-dominated regime and >∼K 4 is represented the toughness-
dominated regime. Adachi15 showed that stress singularity at the
fracture tip varies from rt−1/2 to rt−1/3, where rt is the distance from the
fracture tip. Hence, any sophisticated numerical method should be able
to adjust for a varying order of singularity (λ) at the fracture tip. The
order of singularity is a function of fracturing fluid viscosity, fracture
toughness of the rock, and fracture length.15 The exponent in rt is the
order of singularity minus one.

To address above-mentioned challenges, several numerical methods
using the finite element methods,16 the extended finite element method
(XFEM),17–19 continuum damage failure model,20 cohesive zone
model,21 and the boundary element methods22 have been proposed in
the literature to model the hydraulic fracturing propagation. Further-
more, Dahi Taleghani23 provided an overview of numerical models that
can be used for modeling of interaction between hydraulic and natural
fractures. In the finite element framework, modeling of crack growth
has been carried out by applying various re-meshing strategies in the
literature,24 but re-meshing is computationally burdensome, involving
transfer of data between different meshes. To address this inefficiency,
the XFEM was developed.17 In this approach, discontinuities such as
fractures are allowed to propagate independently of the mesh config-
uration by permitting the discontinuity to cross the elements. For this
purpose, finite element space will be enriched by additional functions,
which are based on the analytical solution of the problem. Therefore,
the new functions make it possible to embed discontinuities in the so-
lution space. The enrichment is performed from a node to a node in a
mesh by activating additional degrees of freedom when needed. A
regular mesh for solving elasticity equations consists of quadratic tri-
angular elements, i.e. each element has six nodes or twelve degrees of
freedom. If the hydraulic fracture crosses a quadratic triangular

element, two extra degrees of freedom per a main node of the triangular
element associated with the sign function are activated. If a quadratic
triangular element has the fracture tip inside, eight extra degrees of
freedom per a main node of the triangular element are activated to
honor tip enrichment. A regular mesh for solving fluid flow equations
consists of quadratic linear elements, i.e. each element has three de-
grees of freedom. If an element has the fracture tip, an extra degree of
freedom is activated to catch the singularity at the fracture tip for the
viscosity-dominated regime. The XFEM has more advantages: the
symmetry and sparsity of the stiffness matrix is preserved, the crack
geometry can be completely arbitrary with respect to the mesh, and
automatic enforcement of continuity.

Lecampion25 attempted to use the XFEM to model the hydraulic
fracturing problem. He sought the elasticity solution via the XFEM for a
given fracture geometry with either specified fluid pressure distribution
or fracture width. Modeling was limited to fractures located along the
element edges; the fracture propagation and coupling process was not
addressed in Lecampion.25 The main advantage of the XFEM was ne-
glected by assuming that the fractures were required to be aligned with
the element edge. Gordeliy and Peirce made a significant effort to in-
vestigate the use of the XFEM for hydraulic fracturing problems. Gor-
deliy and Peirce26 described coupled algorithms that use the Extended
Finite Element Method (XFEM) to solve propagation of hydraulic
fractures in an elastic medium. Gordeliy and Peirce27 investigated
convergence of the XFEM and presented novel enrichment basis func-
tions.

We chose the XFEM to solve the hydraulic fracture propagation
problem, because it particularly provides the opportunity to model
fracture growth without mesh updating during the fracture network
evolution. Furthermore, the XFEM does not require a high mesh con-
centration near the crack tip to catch the singular behavior of stress
field at the crack tips.17 The geometry of the fractures is handled in the
model by the level set method, similar to.28 Additionally, singularity of
the fluid pressure at the fracture tips29 is modeled by introducing extra
enrichment for fluid pressure solution in the XFEM. To expedite nu-
merical modeling process, Green's functions are used for fracture pro-
pagation calculations. Green's functions represent contribution of a unit
load that is applied at a point along the fracture to the total stress in-
tensity factor at the fracture tips.

2. Governing equations

The hydraulic fracturing process involves coupling three processes:
(i) mechanical deformation of the formation caused by fluid pressure
inside the fracture, (ii) fluid flow within the fracture network, and (iii)
fracture propagation.14 Rock deformation is usually modeled using
linear elasticity. The fluid flow inside the fracture is typically simplified
to flow along a channel by using lubrication theory. The fracture pro-
pagation process is considered in the framework of linear elastic frac-
ture mechanics (LEFM) theory. Now, we will describe how all three
processes are modeled in this paper.

The plane strain geometry is utilized in this paper. We consider a
regular body Ψ bounded by a smooth curve Γ . The boundary Γ of the
body Ψ can be divided into Γu and Γt , depending on whether the
boundary conditions at a given location on the boundary are dis-
placement (Dirichlet) boundary conditions (Γu) or tractions (Γt). Let u
and ε be the displacement and strain field, respectively. The strong
form, which is transformed into the weak form in Section 3 and solved,
of the initial boundary value problem has the following form
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