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A B S T R A C T

Numerical simulations of multistage hydraulic fracturing usually neglect poroelastic effects. However, in case of
low permeability reservoirs, where hydraulic fracturing is usually carried-out using relatively low viscosity fluids
and high injection rates, coupled poroelastic mechanisms need be included for better understanding of the
fracturing process, which can involve rock failure and/or reactivation of natural fractures. In this paper, we
present a fully coupled three-dimensional poroelastic analysis of multiple fracture propagation from horizontal
wells. The numerical model uses the indirect boundary element method of displacement discontinuity for
poroelastic response of the rock, the finite element method for fracture fluid flow, and the linear elastic fracture
mechanics approach for fracture propagation. The model accounts for the mechanical interactions among
multiple fractures, mixed-mode propagation, fluid diffusion into the reservoir matrix, and the effects of fluid
diffusion on the rock mechanical response. The model is verified with analytical solutions, and numerical ex-
amples of simultaneous and sequential fracturing of single and multiple horizontal wells in the Niobrara Chalk
formation are presented. The results show the created fracture network geometries are strongly influenced by the
mechanical interactions among the fractures. It is also demonstrated that the poroelastic effect increases the net
fracture pressure and causes a reduction in fracture volume. The poroelastic model illustrates the transient
character of stress shadow, and is particularly useful for re-fracturing analysis since it readily calculates the
stress variations due to reservoir depletion.

1. Introduction

Multistage hydraulic fracturing of horizontal wells is a commonly
used technique for enhancing the permeability of unconventional re-
servoirs. Horizontal well stimulation usually involves creating cluster of
multiple fractures in stages along the wellbore using different well
completion techniques. These multiple fracture stages generate large
contact surface area with the reservoir and increase of reservoir per-
meability. In fracturing low permeability reservoir, it is important to
optimize the spacing between fractures to achieve economical pro-
duction rates and an optimum depletion of the reservoir. Designing
closely-spaced fractures would tend to use excessive energy and the
mechanical interaction between fractures may result in undesirable
stimulation outcome e.g., termination of fracture propagation. The
mechanical interaction between multiple fractures arises from a frac-
ture's “stress shadowing” effect1 which varies with the net applied fluid
pressure. In homogeneous rocks, the mechanical interaction between
fractures is a function of spacing among them, and the in-situ stress
contrast, However, in heterogeneous systems, rock properties and

poroelastic processes2 become important. The effect of stress shadowing
when multiple hydraulic fractures are created parallel to each other is
of major interest in numerical simulations and have been studied using
multiple fracture models (e.g.,).1–5

Several numerical studies of 3D hydraulic fracture simulation have
been carried out. 6 presented a 3D coupled model based on the dis-
placement discontinuity method and demonstrated multiple fracture
propagation from the vertical wells and7 developed a 3D non-planar
fracture propagation using the extended finite element method. 3D non-
planar mixed-mode propagation was simulated in8 using the VMIB,
and9 extended the work to include thermal stress effects. Other mod-
eling efforts include planar 3D and non-interacting, or with simplified
interactions among fractures such as.10–12 These earlier numerical
models have been based on the theory of elasticity, and many of them
do not consider out-of-plane propagation of fractures due to mechanical
interaction or in-situ stress anisotropy.

In case of unconventional reservoirs (e.g., tight oil and shale gas
reservoirs), where hydraulic fracturing is carried-out using relatively
low viscosity fluids and high fluid injection rates, the coupled
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poroelastic phenomena such as changes in the rock deformation due to
diffusion of the pore pressure and the pore pressure induced by the
mechanical deformation of the solid rock need to be incorporated for
better understanding of hydraulic fracturing which often involves rock
failure and/or reactivation of natural fractures. The coupled fluid dif-
fusion/rock deformation processes can be accounted following Biot's
linear poroelastic theory.13,14 Often, the poroelastic effects on the hy-
draulic fracturing process are included using the “backstress” con-
cept.15–19 Recently, a few studies have been presented for 3D hydraulic
and natural fracture simulation using coupled poroelasticity e.g.,20

and21 presented 3D poroelastic analysis of pressurized natural fractures.
Kumar and Ghassemi22–25 studied multiple 3D fracture propagation
from the horizontal wells in poroelastic reservoirs using the DD method.
Salimzadeh et al.26 also have presented a poroelastic finite element
based 3D model to study mechanical interaction among multiple frac-
tures.

In this paper, we present a fully coupled 3D poroelastic hydraulic
fracture model with capabilities to simulate multistage fracturing from
a multiple well system and refracturing of multiple horizontal wells
(see.24,25,27 The study is motived by the need to evaluate the impact of
pore pressure and poroelastic effects on stress shadowing during multi-
stage fracturing of a horizontal well and the multiple horizontal wells.
The model uses a combination of the poroelastic displacement dis-
continuity (DD) method to simulate solid rock deformation and fluid
diffusion in rock matrix, and the Galerkin's finite element approach is
used to model fluid flow inside the fractures. The major details of 3D
poroelastic DD formulation for the case of a stationary fracture can be
found in.20,21,28 A brief description of the governing equations and
implementation methodologies are included in this paper. The ver-
ifications of model are presented first using the asymptotic analytical
solution for impermeable rock. Finally, the model is applied for analysis
of simultaneous propagation of multistage fractures from multiple
horizontal wells.

2. Theory and governing equations

2.1. Poroelastic deformation of the rock matrix

The poroelastic deformation of the rock matrix is governed by linear
theory of poroelasticity The Biot's theory was reformulated by several
authors such as.29,30 Under isothermal conditions, the coupled con-
stitutive equations for the poroelastic rock mass are givens as31:
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where σij is the total stress tensor, εij is the strain tensor, p is the pore
pressure, ζ is the fluid content variation per unit volume of porous
material, α is the Biot's effective stress coefficient, G is the shear mod-
ulus, ν and νu are the drained and undrained Poisson's ratio, respec-
tively, δij is the Kronecker delta function, and the indices “i” and “j”
varies from 1 to 3 for 3D analysis, the repeated indices “kk” represents
summation of the corresponding variable. The above equations present
fundamental phenomenon of deformation of fluid saturated porous
rocks which are the volumetric response of the rock mass, pore pressure
variation, and change in the pore pressure due to applied stresses. For
complete description of the governing equations of the poroelasticity
along with constitutive equations (Eqs. 1 and 2), the equilibrium con-
dition, fluid diffusion, and the fluid mass balance equation should be
included. The pore fluid diffusion is governed by Darcy's law as:
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where qi is the fluid flux in ith direction, k is the rock permeability, μ is

the pore fluid viscosity, and∇ is the gradient operator In absence of the
body force and fluid source, by combining the constitutive equations,
diffusion equation, and the equilibrium conditions, the field equations
for the poroelastic rock matrix are given using the Navier's equations
with coupling terms as31:
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and the pore-fluid diffusion equation is given as:
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where μi represents the solid displacement in ith direction, B is the
Skempton's pore pressure coefficient, and =κ k μ/ is the reservoir per-
meability coefficient. The above equations establish basis for the linear
poroelastic analysis and need to be solved numerically using appro-
priate initial and boundary and conditions for a given problem.

2.1.1. Boundary integral equations for rock matric and fracture
deformation

The indirect boundary integral equations for the displacement dis-
continuity (DD) method are used for numerical implementation of Eqs.
(4) and (5). The development and application of the DD started with
attempts to simulate mining problems involving silt-like openings with
one dimension much smaller compared with the other dimensions.32–36

Crouch35 developed the fundamental solutions for a DD line segment in
infinite and semi-infinite media. Other investigators developed the
point load DD formulation based on the Green's fundamental solution
for a point source.37–39 These fundamental solutions can be integrated
over arbitrarily shaped element to generalize the DD method. The point
load DD solution represents discrete analogs of Kupradze's type equa-
tions (e.g.,40–44 for the double layer potential for elasticity. The point
source DD concept have been extended for the 2D and 3D hydraulic
fracture simulations in the poroelastic media in several
works.15,16,18,20,45,46 For completeness, a brief description of the 3D
poroelastic DD formulation and its numerical implementations are in-
cluded in this paper.

A fracture in a poroelastic media can be simulated by distributing
displacements and the fluid flux discontinuities on its surface and ap-
plying the principle of superposition to sum their effects such that the
boundary conditions are satisfied. Using the corresponding singular
solution, boundary integral equations for the resultant displacements,
fluid fluxes, stresses, and reservoir pore pressure can be derived. The
boundary integral representations for the stresses and pore pressure at
any point in the reservoir or on the fracture surface can be expressed
as20,21,28,47:
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where x and χ represents the local coordinates of the source and field
points, respectively, t is the current time and τ is the time when the
location χ receives the fluid first time, Dkn represent the DD vector, Df

is the fluid source intensity vector, σijkn
id , σij

is, pij
id, and pis are the in-

stantaneous fundamental solutions for the stresses and pore pressure
due to a unit impulse of the displacement discontinuity (“id”) in the
“kn” direction and a unit impulse of the fluid source intensity (“is”),
σ x( )ij

0 are the in-situ stress components, and p x( )0 is the in-situ reservoir
pore pressure. These fundamental solutions are functions of the por-
oelastic properties of rock mass and spatial distance and time interval
between field and source points. A physical representation of dis-
placement discontinuities and fluid source intensity are shown in Fig. 1.
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