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A B S T R A C T

A displacement-softening contact model is proposed to simulate the failure behaviors of quasi-brittle materials
using the discrete element method (DEM) based on spherical particles. The contact model is modified from the
parallel bond option in the DEM code PFC D D2 /3 . By adjusting the softening coefficient, which defines the ratio
between the unloading and loading contact stiffnesses in the normal component, the softening contact model can
not only yield realistic compressive over tensile strength ratios as high as about 30, but also capture the highly
nonlinear failure envelope at the low confining stress range, typical for rocks. Formulation of the contact model
is first introduced. Uniaxial compression, direct tension and confined compression/extension tests are then
performed in both 2D and 3D to illustrate the effects of the softening coefficient on the micro- and macro-scale
failure mechanisms, the stress-strain behaviors and the compressive over tensile strength ratio. Calibration of the
mechanical properties is conducted to identify the set of micro-scale parameters for two widely modeled rocks,
Lac du Bonnet granite and Berea sandstone. Excellent agreement is achieved between the numerical simulations
and the experiments in terms of the uniaxial strengths and the failure envelopes.

1. Introduction

A common issue in numerical modeling with the discrete element
method (DEM),1 based on spherical particles in a dense random
packing, is that the largest compressive over tensile strength ratio
(UCS/UTS) a particle assembly can attain is only about 3–5, if the in-
teractions between the particles are limited to short-range, elasto-per-
fectly brittle and frictional.2,3 The associated failure envelope generally
fails to capture the high nonlinearity in the low confining stress range,
typical for quasi-brittle materials such as rocks.4,5 Such a deficiency
may not be an issue for a DEM simulation if the macro-scale failure
involved in the problem of interest is in a single mode, namely, either
solely shear failure governed plastic flow or tensile fracturing.6 How-
ever, rock failure in general could involve both plastic flow and tensile
fracturing. The strength ratio, which can be viewed as a measure of
material brittleness, then affects the transition from one mode of failure
to the other. A high compressive over tensile strength ratio means that
in the low confining stress range, the material is more likely to fail in
tension, whereas a low strength ratio means that the material is more
likely to fail in shear. In order to quantitatively model complex rock
behaviors, it is therefore critical that the strength ratio as well as the
failure envelope of a DEM model are properly calibrated.

Numerical strategies such as clumping/clustering particles,7 in-
creasing the particle interaction range8 or using multiscale re-
presentation of the grain structure and rock fabric,9,10 have been sug-
gested in the literature to address the issue of the low strength ratio.
Nevertheless, DEM modeling with spherical particles having only short
range interactions has its appeal in its computational efficiency.

In this work, we show that a high strength ratio and the associated
nonlinear failure envelope at low confinement can in fact be achieved
by implementing a displacement-softening contact law within the
conventional framework of soft particle DEM.1 The discrete element
code PFC2D/3D11 is employed to illustrate the effect of the softening
contact model on the macro-scale strength behaviors. The default par-
allel bond contact model in PFC2D/3D is modified to incorporate a
softening force-displacement relationship in the normal component of
the parallel bond. Only one additional parameter, the softening coef-
ficient β, is introduced in this displacement-softening contact model.

Formulation of the displacement-softening contact model is first
introduced. Effects of the softening coefficient on the uniaxial com-
pressive and tensile strengths and the corresponding failure mechan-
isms in the unconfined tests are then examined. For the case where the
softening coefficient yields a strength ratio of UCS/UTS ∼ 10, confined
extension and compression tests are performed in both 2D and 3D to
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obtain the failure envelopes. The results are compared with the Hoek-
Brown and Mohr-Coulomb criteria. Finally, calibrations of the DEM
model against properties similar to those of two widely studied rocks,
Lac du Bonnet granite and Berea sandstone, are presented.

2. A displacement-softening contact model

A parallel bond in PFC2D/3D can be envisioned as a series of elastic
springs distributed over the contact area between a pair of particles in
contact. In addition to the normal and shear contact forces, bending
moments can be transmitted through the contact between particles. The
default parallel bond contact model includes two types of contacts
acting in parallel.3,11 They can be described by two groups of micro-
scale parameters: (1) particle-particle contact (point contact): normal
and shear stiffnesses, Kn and Ks ([F/L]), and the friction coefficient μ;
(2) the parallel bond (area contact): apparent normal and shear stiff-
nesses, kn and ks ([F/L3]), the normal and shear bond strengths, σc and
τc ([F/L2]), and the parallel bond radius multiplier λ . The radius mul-
tiplier λ defines the contact area radius for the parallel bond via

=R λ R Rmin( , )A B , where RA and RB are the radii of the two particles in
contact. Since the stiffnesses for the two types of contact differ in di-
mensions, it is more convenient to specify apparent moduli as the input
parameters instead. For example, the normal stiffnesses Kn for the point
contact between particles and kn for the parallel bond can be de-
termined from,
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where Ec and Ec are the apparent moduli for the particle-particle con-
tact and the parallel bond, respectively. Assuming compression posi-
tive, the point contact model relates the forces and displacements
through,

= − = −F K δ F K δΔ Δn n n s s s (2)

and follows Coulomb's law of friction,

≤ ≤ = = >F F δ F F δμ if 0, 0 if 0s n n n s n (3)

where Fn and Fs denote the normal and shear contact forces in the point
contact, respectively; δn is the overlap ( >δ 0n indicates a gap at the
contact) and δs is the slip between the pair of particles.

For the area contact, before reaching the softening condition, the
contact forces, Fn and Fs , and the bending moment, M , follow incre-
mental linear relationships with the parallel bond stretch δn, slip δs and
the angle of relative particle rotation θ ,

= − = − = −ΔF k AΔδ ΔF k AΔδ ΔM k IΔθn n n s s s n (4)

where A and I are the cross sectional area and the moment of inertia of
the parallel bond, respectively. The total force at the contact is the sum
of the force components at both the point and area contacts.

The softening force-displacement relationship is implemented in the
normal component of the parallel bond contact (see Fig. 1). Softening
occurs when the normal contact force Fn in a parallel bond reaches a
limit defined by the normal bond strength, i.e.,

= = −F F σ An n cmax (5)

The force-displacement relationship during the softening stage can be
expressed as,

= − + ≥F βk δ A β σ A δ δ(1 ) ifn n n c n 1 (6)

where δ1 is the bond stretch at the peak force and the softening coef-
ficient β defines the ratio between the softening and loading stiffnesses,
i.e., =β k k/u l and =k k Al n . The parallel bond fails if one of the criteria
below is met at the contact,

+ ≥δ R θ δn c (7)
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where δc is a critical bond stretch and τc is the shear bond strength. Both
the normal and shear forces, Fn and Fs , in the parallel bond reduce to
zero, when the bond fails according to Eqs. (7) or (8). The elasto-per-
fectly brittle case, when → ∞β , is the default parallel bond option in
PFC2D/3D and has been widely used in DEM studies in the literature.3

The softening law described above essentially accounts for the pro-
gressive failure of the bonds and also increases the range of interaction
between particles.

Breakage of a parallel bond is termed a micro-crack event here. Note
that the micro-scale failure mechanisms of whether a bond fails in
tension (Eq. (7)) or in shear (Eq. (8)) does not directly translate to a
tensile or shear failure mechanism at the macro-scale.12,6 In a DEM
simulation, localization and coalescence of the micro-cracks to form a
planar feature can be interpreted as development of a macro-crack or a
shear band, while accumulation of the micro-cracks to form a cluster
can be considered equivalent to growth of a crushed or damaged zone.
Depending primarily on the micro-scale bond strength ratio, τ σ/c c, the
macro-scale failure mechanisms, whether it is a tensile crack, a shear
band, or a damaged zone, could be a result of localization of tensile
micro-cracks only, shear only or a mixture of both.13,14 In this study, we
assume that the micro-scale failure mechanism is of tensile origin,
which is reasonable for quasi-brittle materials such as rocks. Therefore,
we set the shear bond strength τc to be much larger than the normal
bond strength σc ≫τ σ( )c c . This basically renders Eq. (8) practically
inapplicable here.

If we use the beam theory as an analogy for the parallel bond, δn is
equivalent to the elongation on the neutral plane. The normal bond
failure criterion means that the bond fails if the stretch at the edge of
the bond reaches the threshold value δc. In this model, we set =δ δc 2,
i.e.,
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When the parallel bond breaks, the bond stretch δn at the contact is,
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Note that ≤δ δ* 2 since rotational contribution is included in the normal
bond failure condition (Eq. (7) or (10)). For large β, it is possible that
the bond failure condition is met before the softening condition (Eq.
(5)) is reached. It should be noted that in this contact model, only the
coefficient β, in addition to the normal bond strength σc and kn (or Ec),
is needed to describe the softening behavior.

3. Effect of the softening coefficient

3.1. Unconfined tests

A rectangular sample of × = ×W H 60 120 mm in 2D and a cy-
lindrical sample of × = ×D H 40 80 mm in 3D are employed to in-
vestigate the effect of the softening coefficient β on the unconfined
material strengths with =β 0.015, 0.1 and∞. Particles of a uniform size
distribution are generated randomly within the simulation domain. The
following micro-scale parameters for the particles and contacts are
chosen as the baseline: particle radii = −R 0.8 1.66 mm, density

=ρ 2630 kg/m3; point contact modulus =E 50 GPac , stiffness ratio
= =κ k k/ 4.0n s , friction coefficient =μ 0.5; parallel bond modulus
=E 50 GPac , bond stiffness ratio = =κ k k/ 4.0n s , and contact radius

multiplier =λ 1.
The mean normal bond strength σc for each β is chosen such that the

area of oABΔ in Fig. 1 remains the same. The area of oABΔ can be
considered a nominal measure of the energy loss due to each bond
breakage. Denote Ub as the nominal energy loss density,
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