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A B S T R A C T

The purpose of the study presented was to develop a Modified Cubic Law (MCL) for single-phase saturated
laminar flow in rough rock fractures. Based on the fundamental assumptions made for the Cubic Law (CL), the
proposed MCL incorporates modifications to the aperture field by considering flow tortuosity, aperture variation
and local roughness effects. We assess the performance of the MCL by applying it to synthetic fractures with
different surface roughness and varying aperture and compare the outputs to numerical simulation results from
solving the Navier-Stokes Equations and results from previous versions of CL-based models. In general, the MCL
performs well in predicting the volumetric flow rate in synthetic fractures with deviations (D) from simulation
results ranging from −11.1% to 8.4% and an average effective deviation of 4.7%. The proposed model retains
the simplicity of CL models and improves the accuracy of flow prediction in terms of single-phase saturated
laminar flow in rough rock fractures and it can be extended to analyse other hydro-related problems.

1. Introduction

Rock masses commonly include fractures or faults resulting from
either tectonic activities or human disturbances. These fractures, at
different scales, often act as active conduits for fluid flow (e.g., water).
A sound knowledge of the controlling mechanism of fluid flow in rock
fractures is of interest in various research fields and engineering ap-
plications including groundwater flow, solute transport, enhanced
geothermal systems and hazardous waste disposal [e.g.,1–3]. Modelling
the complex behaviour of flows in fractured rock masses requires a
fundamental understanding of the hydraulic behaviour of discrete
single fractures.

The Navier-Stokes Equations (NSE) are widely accepted as the
governing equations for steady-state incompressible flow in rock frac-
tures.4,5 By considering mass conservation, they can be written as:

∙∇ = −∇ + ∇u u uρ P μ( ) 2 (1)

∇∙ =u 0 (2)

where ρ is the fluid density, μ is the dynamic viscosity, u is the velocity
and P is the pressure. Although in theory the NSE provide an exact
description of three-dimensional flow in rock fractures, the computa-
tional cost required to solve three-dimensional partial differential
equations is prohibitive for applications beyond the microscopic scale.6

The common approach to modelling fluid flow through rock

fractures is to assume that a fracture consists of two smooth parallel
plates separated by a constant aperture.7 Under this assumption, the
Cubic Law (CL) can be derived8 and has the following form:
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where Q is the volumetric flow rate, W is the fracture width, g is the
gravitational acceleration, b is the fracture aperture, H is the hydraulic
head and L is the fracture length.

The CL is widely used for flow prediction in rock fractures in many
fields due to its simplicity. However, real fractures are often formed by
two surfaces with anisotropic roughness and varying aperture, which
lead to a three-dimensional non-uniform tortuous flow field rather than
the one-dimensional Poiseuille flow assumed by the CL.6,9 Numerous
laboratory experiments indicate that the CL may produce significant
errors in the prediction of flow through rock fractures.10,11 Another
approach is to account for the spatial variability of the fracture aperture
by assuming that a particular CL applies at each explicit location. This is
known as the Local Cubic Law (LCL) and was derived from the NSE
using lubrication theory12; it is also called the Reynolds equation and
takes the form:
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The validity of LCL has been questioned in previous studies. It
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assumes a flat plane for the fracture mid-surface, whereas rough frac-
tures are more likely to have a tortuous mid-surface,13,14 which is in-
compatible with the assumption of a parabolic velocity profile and re-
sults in an over-estimation of the flow rate by a factor of at least 1.75.15

To avoid the computational cost of solving the NSE and to improve
the performance of the over-simplified CL and LCL, research has been
focused on developing alternative models based on modifying the CL
and the LCL. Statistical parameters (e.g., relative roughness17; surface
roughness18) and empirical parameters (e.g., joint roughness coeffi-
cient19 (JRC)) are incorporated to modify the CL by using data from
flow experiments or values generated by the LCL to derive a relation-
ship between the vertical aperture (also known as apparent aperture)
and the hydraulic aperture. As these models ignore flow behaviour at
the local scale, their performance varies significantly with the fracture
void geometry. Ge13 derived an alternative flow governing equation
based on aperture field modification, in which the aperture at each
location is modified by considering the geometric properties of every
local cell (see Fig. 1). This approach is supported by Konzuk and
Kueper,15 who evaluated the modified aperture field with CL models
and found that the CL calculated with either the geometric mean
aperture or incorporating surface roughness factors predicted the flow
rate within± 10% of the observed values for Reynolds number less
than 1.0. Wang et al.14 developed an improved CL-based model by
extending Ge's approach to account for the roughness effect of local
cells as a means of aperture field modification. However, the validity of
modifying the aperture field in terms of the geometric properties of
each local cell may depend on the resolution of the aperture field data
and the variation of both aperture and surface roughness.16,20,21 Oron
and Berkowiz16 conducted a leading-order approximation to two-di-
mensional Navier-Stokes Equations and concluded that the cubic law
assumptions may be valid within certain segments as long as both the
non-dimensional local roughness parameter and the aspect ratio of the
segments are significantly less than 1.0 (i.e., both walls are relatively
smooth and the segment length is much longer than the segment half-
aperture). However, in the absence of non-segmented area treatment
and quantification of the local roughness effect, its application to
fracture flow prediction is limited.

The purpose in this work is to present a Modified Cubic Law (MCL)
with improved performance in terms of predicting the volumetric flow
rate in rough rock fractures. The aperture field is modified by con-
sidering the effects of flow tortuosity, aperture variation and local
roughness. Numerical simulations of fracture flow were conducted for
synthetic fractures with varying surface roughness and aperture by
solving the NSE to assess the validity of the proposed MCL. Previous
models are also used for comparisons to further test the robustness of
the MCL presented here.

2. Model development

2.1. Assumptions for flow direction in segments

We began by making assumptions for the flow direction field of a
three-dimensional fracture with surface roughness. Take a cross-section
of a fracture segment, as shown in Fig. 2; Bs is the average half-aperture
and Ls is the length of this fracture segment. It can be assumed that
Poiseuille flow holds in the segment and the flow direction is governed
by the geometry of the segment when Bs is much smaller than Ls and the
roughness of both walls along the segment is limited.16 These two
conditions require:
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where δ is the aspect ratio and ε is the non-dimensional local roughness
parameter; σu and σl are the standard deviations of the roughness var-
iations of upper and lower walls, respectively. Under both conditions,
the representative flow direction follows the orientation of the geo-
metric centreline of the segment.13 The segments of each fracture can
be determined by calculating δ and ε along each fracture cross-section
using their assigned maximum values. We discuss the range and de-
termination of δ and ε in Section 4.1.

2.2. Consideration of flow tortuosity

At the scale of a single fracture, flow tortuosity is defined as the
ratio of the three-dimensional flow path length to the straight-line
distance of fracture length.22 In this study, the tortuosity τ of each
segment is defined as the ratio of flow path distance df to the straight-
line distance ds projected in the fracture plane:

=τ d d/f s (7)

The vertical aperture at each location within the approximated
segment with walls of averaged straight lines (see Fig. 2) can be de-
termined according to the geometry of the approximated segment. As
the aperture, defined in the CL, should be perpendicular to the flow
direction, vertical apertures need to be translated into flow-oriented
apertures defined by the segment aperture bsf. We use the formula
proposed by Ge13 to obtain the relation between the vertical aperture
and bsf within the segment:
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where bv is the vertical aperture, αu and αl are the inclination angles of
the upper and lower walls respectively. Connective transmissivity6,23

(T) between each local cell within the segment can be approximated
using the harmonic mean of adjacent apertures:
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Fig. 1. Different definitions of fracture aperture with solid arrows representing the ver-
tical aperture, dotted arrows for the aperture perpendicular to the local cell centreline13

and the bold dashed arrow for the segment aperture.16 The bold dashed lines are the
segment walls and the dashed lines refer to the centrelines of the local cells. One typical
local cell is illustrated as the area marked by the block.

Fig. 2. Illustration of one segment with Bs the half-aperture and Ls the segment length.16
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