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a b s t r a c t

We propose a procedure to efficiently monitor the geomechanical behavior of underground porous re-
servoirs undergoing fluid withdrawal/injection. We apply the inhomogeneity problem and invert geo-
detic data on subsidence/uplift to calibrate and specify parameters used for geomechanical models.
Based on pressure changes, we first calculate the poroelastic strain of the reservoirs, then we test it
assuming uniaxial deformation on a three-dimensional ellipsoidal inhomogeneity with different semi-
axes, in a full space isotropic elastic domain and finally we apply a simple half space approximation to
account for the tractions-free ground surface. Despite its simplicity and the initial full space approx-
imation, the semi-analytical model derived in this study replicates well poroelastic strains inferred by
geodetic data or obtained with other analytical and numerical techniques. Our model is a good ap-
proximation for predicting the profile of surface deformation (i.e. geodetic strain) and, once calibrated, its
magnitude.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Reservoir compaction, land subsidence, triggering of landslides
and earthquakes have been attributed to poroelastic stress chan-
ges generated by fluid injection or extraction in/from different
hydrocarbon fields.1–4

Fluid extraction or injection from/into a reservoir causes pore
pressure and effective stress changes due to poroelastic coupling,
both in the reservoir and the sealing/encasing rocks. The variations
in pore pressure and effective stress cause compaction or dilation
in the reservoir generating subsidence or uplift of the ground
surface and, in more extreme cases, damages to infrastructures
and induced seismicity. In the last decade, public opinion and
administrative authorities have become sensitive to these latter
risks, which are directly related to an increasing demand for en-
ergy (hydrocarbon production) and the strategic need to store gas
in the subsurface at different locations for controlling demand,
price, and international crisis.5,6

Release of permissions for hydrocarbon production and storage
as well as reservoir management, today rely even more than in the
past on predictive tools based on geomechanical models. Different
types of geomechanical models, based on analytical, semi-analy-
tical/closed form, and numerical techniques, have been developed
to estimate deformation in the reservoir and at the ground surface

induced by fluid pressure change and for resolving inverse pro-
blems (for parameters estimation).

Assuming mechanical homogeneity between reservoir and
bounding rocks, Geertsma1 developed an uniaxial model for re-
servoir compaction and related land subsidence based on the
nuclei of strain concept7 in an elastic half-space. Segall,3 by using
the Eshelby's inclusion theory, used the concept of “transforma-
tional strain” for calculating external stresses and deformation
derived by a uniform fluid withdrawal from a reservoir in an half-
space under plane strain conditions3 and with an axisymmetric
shape8,9 assuming reservoirs having the same mechanical prop-
erties of the surrounding rocks. Following the work of Segall8, Du
and Olson10 constructed a numerical model to predict surface
subsidence and reservoir compaction, and Vasco et al.11 analyzed
surface tilt generated by fluid injection and soil consolidation to
estimate the surface deformation.

Other methods have been used to account for different re-
servoir geometries and for the effects of variations in mechanical
parameters between reservoir and surrounding rock. For example,
Rudnicki12 solved for the problem of a poroelastic reservoir, me-
chanically different from the surrounding rocks, using the theory
developed by Eshelby13 and considering the reservoir as an ellip-
tical inhomogeneity in an elastic full space. Soltanzadeh et al.14

solved the problem of a lateral infinite poroelastic inhomogeneity
with elliptical cross-section under plane strain conditions in a full
space.

The main limitation of the previous analytical methods, is the
assumption of simplified geometry, i.e. ellipsoidal reservoir with
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only one semi-axis different than the others or infinite lateral
extent of the reservoir, or the consideration of reservoir properties
being identical to those of the surrounding material; our method
overcomes some of these geometric limitations.

One limitation in our method is the full-space approximation,
which neglects the effect of the free boundary surface; the induced
strain from a constant eigenstrain in the inclusion of a semi-in-
finite medium, in fact, is not uniform. According to Rudnicki,12

however, the full-space plane strain solutions can be good ap-
proximations for relatively deep reservoirs, for reservoirs with
thickness much less than their lateral extent, and where the as-
sumption of uniaxial strain in the reservoir is valid, as long as the
shear modulus of the reservoir is not much larger than that of the
surrounding material.

Davies15 has shown that the elastic field due to non-uniform
temperature or a coherently misfitting inclusion in a semi-infinite
region can be simply derived from the corresponding field in an
infinite region; in particular he showed that displacement of a free
surface is the same as that of the equivalent plane in an infinite
solid multiplied by a factor 4(1�ν).

The objective of our work is to develop a new simple method
for first assessment of reservoir deformation. Our main contribu-
tion is to calculate the eigenstrain from pressure changes by taking
advantage of a semi-analytical model developed by Meng et al. in
Ref. 16 which allows to calculate strains, stresses, and displace-
ments for an ellipsoidal inhomogeneity in an infinite isotropic full
space, with complex geometries for the ellipsoid (i.e. three dif-
ferent semi-axis), through the equivalent inclusion method based
on Refs. 13 and 17.

After an overview of the poroelastic inhomogeneity problem,
we describe a method to monitor the strains associated to un-
derground porous reservoirs undergoing fluid withdrawal/injec-
tion. Then, we test this method by comparing our modeled land
subsidence with published examples of two reservoirs, the Lacq
field9 and the Lombardia field,18 where surface deformation has
been derived from field surveys as well as from analytical and
numerical modeling approaches. We show that the inhomogeneity
problem can rapidly, accurately, and efficiently model the de-
formation profile of the ground surface during production or in-
jection of fluids in “real world” poroelastic reservoir.

2. Methods

The method that we follow in our analysis is based on the so-
lution of the inhomogeneity problem under an uniaxial strain
approximation. Our major contribution is to apply this method to
real-world reservoir fluids injection/production problems. All cal-
culations have been performed using the Matlab™ software. The
code used is a modification of Ref. 16.

2.1. The inhomogeneity problem

Consider an inclusionΩ embedded in an infinite homogeneous
isotropic elastic medium D (Fig. 1). The inclusion undergoes an
eigenstrain ε *. The induced elastic fields caused by eigenstrain ijε*
in the inclusion can be written as17

u C Gx x x x xd , 1i jlmn mn ij l,∫ ( ) ( )ε( ) = − * ′ − ′ ′ ( )Ω
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1
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where x 0ijε*( )= for Dxmnε* ( ′)∈ and Cijkl are the elastic constants of
the material, for both inclusion and matrix. The Green's function
G x xij ( − ′) gives the displacement component in the xi direction at a
generic point x when a unit body force in the xi direction is ap-
plied to a point x′ in the infinite medium.

Unless specifically indicated, the conventional summation
convention for the repeated indices is used, whereby repeated
indices indicate summation over the values 1, 2, 3, and indices
preceded by a comma denote differentiation with respect to the
Cartesian coordinates corresponding to the index following the
comma.

It has been shown by Eshelby13 that for an ellipsoidal inclusion
with uniform eigenstrain, the induced strain in the inclusion is
uniform and can be expressed as follows:

Sx 4ij ijkl klε ε( ) = * ( )

where Sijkl is called the Eshelby's tensor, which is a function of the
inclusion shape and of the elastic properties of the matrix (in the
case of an isotropic matrix, it is a function of the Poisson’s ratio
only), with S S Sijkl jikl ijlk= = . Detailed expressions of Eshelby's
tensor for various ellipsoidal inclusions have been reported in Ref.
17.

If the sub-domain Ω has elastic properties differing from those
of the rest of the domain D�Ω (matrix) than it is called an in-
homogeneity. The inhomogeneity is called an inhomogeneous
inclusion when it undergoes its own eigenstrain. Eshelby13 poin-
ted out that the problem of an ellipsoidal inhomogeneous inclu-
sion can be transformed into an equivalent inclusion problem
when the correct equivalent eigenstrain is chosen. Consider an
ellipsoidal domain Ω with elastic moduli Cijkl* embedded in an
infinite homogeneous mediumwith the elastic moduli Cijkl (Fig. 1a)
undergoes an eigenstrain ε * (Fig. 1b). Because the eigenstrain is
considered stress free (i.e. without the constraint of the matrix),
we need to subtract it from the total strain when we calculate the
stress in the inhomogeneity or inclusion (Fig. 1c).

The induced stress can be found as follows:

x C in C in D, x 5ij ijkl kl kl ij ijkl kl( )σ ε ε Ω σ ε Ω( ) = * − * ( ) = − ( )

In the equivalent inclusion method, the inhomogeneity is re-
placed by an inclusion in the homogeneous medium with an
equivalent eigenstrain ijε ** (introduced here as fictitious one just
for the simulation). Then the induced stress can be obtained as
follows:

x C in X C in D 6ij ijkl kl kl ij ijkl klσ ε ε Ω σ ε Ω( ) = ( − **) ( ) = − ( )

This fictitious eigenstrain ijε** (for the equivalent inclusion) can
be obtained by solving the equivalence between the stresses in the
inhomogeneity (5) and the stresses in the equivalent inclusion (6)

Fig. 1. The inhomogeneity problem and its equivalent inclusion solution.
(a) Ellipsoid volume Ω, with a different elastic moduli Cijkl* (inhomogeneity) from
the encasing full space elastic domain (the matrix) D (Cijkl). (b) The inhomogeneity
contracts/dilates by ijε* without the constraint of the matrix. (c) Stresses are applied
to the inhomogeneity in order weld it to the matrix (d). The resulting stresses are
solved by the equivalent inclusion method.
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