
Digital image based numerical micromechanics of geocomposites
with application to chemical grouting

R. Blaheta, R. Kohut n, A. Kolcun, K. Souček, L. Staš, L. Vavro
Institute of Geonics AS CR, v.v.i., Ostrava-Poruba, the Czech Republic

a r t i c l e i n f o

Article history:
Received 3 February 2012
Received in revised form
26 February 2015
Accepted 7 March 2015

Keywords:
Geocomposites
Upscaling
Digital CT image based FEM
Identification of material parameters

a b s t r a c t

The presented paper describes procedures of numerical upscaling and experience with X-ray CT based
finite element (FEM) analysis of properties of geocomposites. The upscaling technique is used for
obtaining the macro-level response of material by loading test (representative) volumes with described
micro-level structure. The application is focused on geocomposites arising from chemical grouting of
coal substances. The obtained (homogenized) macro-level properties serve for solving stability problems
by numerical modeling in geotechnical engineering. The paper touches several interacting topics –

numerical upscaling and understanding to its results; application of X-ray computed tomography (CT)
for visualization of structure of geomaterials; processing the digital image data for constructing FEM
models of test volumes; numerical testing of digitalized samples for obtaining homogenized properties
and clearing up sensitivity to changes in local material properties, micro-level structure and FE mesh;
validation of numerical results by comparison with laboratory testing of samples; use of identification
technique for refining the local material properties and calibration of the upscaling procedure.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In geotechnics, one uses a variety of technological procedures for
modification of rock or soil properties for different purposes like
decreasing permeability for remediation, reinforcement for building
of surface and underground constructions, stabilization of openings
for mining etc. These modifications can use piles, anchors and also
various grouting procedures with cementitous or polymer based
(chemical) grouts [1,2]. As a result, the natural geomaterials are
modified into geocomposites with properties more suitable for
engineering purposes.

Chemical grouting is also used in coal mining for strata stabi-
lization [3,4] and especially coal seam grouting provides motiva-
tion for investigation of coal-resin geocomposites [5]. This inves-
tigation aims in answering questions how the mechanical
behavior of geocomposite is influenced by the original coal
structure, filling of fractures and voids, properties of the polyur-
ethane resin etc. The methodology of investigation is based on
testing samples of coal geocomposites, which are developed in the
laboratory [5]. This methodology uses laboratory testing of defor-
mation and strength properties, but also visualization of inner
structure of geocomposites and structural changes under loading.
This paper shows that X-ray CT visualization of the microstructure

can be amended by numerical simulations of the loading tests by
using finite element models constructed from digital images and
local material properties.

In the numerical simulations, the geocomposites are considered
to be two-scale materials. The macro-scale corresponds to the role of
geocomposite in engineering constructions and its characteristics
length L4100 mm. This length also corresponds to the size of (the
smallest) finite elements used for analysis of geoengineering pro-
blems. The micro-scale lengths are 100 or more times smaller, to
represent the fractures and voids filled with polyurethane resin in
different levels of foaming. We use micromechanics to analyze and
clarify the dependence of the macro-scale behavior on the micro-
scale, i.e. the influence of micro-level structure geometry and local
material properties. We can call this process as upscaling and a
short description of the exploited procedures will be presented in
Section 2. Here, we shall discuss numerical testing with different
forms of the applied boundary conditions and touch some questions
of anisotropy of the macro-scale response. Besides the testing the
linear elastic behavior, we only mention the testing of the inelastic
material behavior. The described mathematical procedure will be
applied to the analysis of coal geocomposites, which are more tho-
roughly described in Section 3.

Tensors. In the sequel we consider vectors vAR3 with compo-
nents vi ði¼ 1;2;3Þ, symmetric second order tensors ξATð3;2Þ with
components ξij ði; j¼ 1;2;3Þ and symmetric fourth order tensors
XATð3;4Þ with components Xijkl ði; j; k; l¼ 1;2;3Þ, Xijkl ¼ Xjikl ¼ Xijlk
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¼ Xklij. We use scalar products and corresponding norms

uUv¼
X
i

ui vi; ξ : η¼
X
ij

ξij ηij; X : Y ¼
X
ijkl

Xijkl Yijkl; ‖u‖

¼ ffiffiffiffiffiffiffiffiffi
uUu

p
; ‖ξ‖¼

ffiffiffiffiffiffiffiffiffiffi
ξ : ξ

q
; ‖X‖¼

ffiffiffiffiffiffiffiffiffiffiffi
X : X

p
:

For symmetric positive definite tensors X; Y the inequality
XrY means that ξ : ðY�XÞ : ξZ0 for all ξATð3;2Þ. We shall also
use identity IATð3;4Þ, Iξ¼ ξ for all ξATð3;2Þ,
ðIÞijkl ¼ 1

2ðδikδjlþδilδjkÞ, where δ is the Kronecker's delta. Any
ξATð3;2Þ can be uniquely decomposed into volumetric and
deviatoric parts, ξ¼ ξvolþξdev ; ξvol ¼ IV : ξ ; ξdev ¼ ID : ξ;
ðIV Þijkl ¼ 1

3δijδkl, ‖IV‖¼ 1, ID ¼ I� IV , ‖ID‖¼
ffiffiffi
5

p
, IV : ID ¼ ID : IV ¼ 0.

2. Numerical upscaling

The procedure for investigation of influence of micro-level
structure to macro-level material properties starts with definition
of the test volume (TEV) Ω as a macro-level size sample of the
material involving micro-level structure. The test volume TEV is
equal to representative elementary volume (REV) standardly used
in the homogenization theory if it provides unique complete
information about the macro-level material properties. If it is
smaller due to restricted knowledge, it can still provide useful
information. Let us assume thatΩ is given with information about
the microstructure (geometry and local material properties). Then
the test volume is loaded on the boundary, to get its mechanical
response and obtain the macro-scale characterization. Note that
the micromechanics usually works with representative volumes,
which provide some statistically homogeneous information, our
test volumes can provide weaker, but still useful information about
the macro-level material behavior. First, we assume linear elastic
material behavior, which is given by elastic behavior of the
constituents and no occurrence of debonding between the con-
stituents (material phases). The deformation of Ω under the
loading is described by the boundary value problem

divðσÞ ¼ 0; σ ¼ c : ε; ε¼ 1
2

∇uþ∇uT� �
inΩ

þboundary conditions on ∂Ω: ð1Þ
where σ ¼ σðxÞ; ε¼ εðxÞ; C ¼ CðxÞ are stress, strain and elasticity
tensors, respectively. As the volume forces are considered to be
zero, the loading is imposed via the boundary conditions
exclusively.

We can consider different types of boundary conditions, which
will influence the testing. Let us consider the following possibi-
lities:

uðxÞ ¼ ξε Ux on ∂Ω; where ξε is a prescribed symmetric second order tensor;

ð2Þ

σðxÞUnðxÞ ¼ ξσ UnðxÞ on ∂Ω; where ξσ is again a prescribed tensor;

ð3Þ

mixed Dirichlet�Neumann BC on Γ0;Γ1; where Γ0
[ Γ1 ¼ ∂Ω; Γ0 \ Γ1 ¼φ; ð4Þ

periodic boundary conditions: ð5Þ
whereΩ is TEV of arbitrary shape for BC (2) and (3). Moreover, we
assume that Ω is a cuboid or cylinder for BC (4) and cuboid for BC
(5). The unit outer normal to the boundary ∂Ω is denoted by n.

On the macro-scale, we consider the test volume Ω as a
homogeneous body with (homogenized) material properties given
by the elasticity tensor C, which defines relation between macro-
stress σ and macro-strain ε. If standard averaging provides the

relation between micro and macro stresses and strains, then

σ ¼ 〈σ〉¼ Ω
�� ���1

Z
Ω
σðxÞ dx; ε¼ 〈ε〉¼ Ω

�� ���1
Z
Ω
εðxÞ dx; Ω

�� ��¼
Z
Ω
dx

ð6Þ
and the elasticity tensor C or its inverse C

�1 ¼D can be deter-
mined from the stress-strain relations

σðkÞ ¼ C εðkÞ or εðkÞ ¼D σðkÞ ð7Þ
where σðkÞ; εðkÞ are pairs of averaged stress and strain, the upper
index indicates that this stress and strain corresponds to k-th case
of loading, which corresponds to application of different boundary
conditions. For example σðkÞ; εðkÞ can be computed from testing
with boundary conditions (2) or (3) with ξε ¼ ξðkÞ or
ξσ ¼ ξðkÞ; k¼ 1; :::;6, where

ξð1Þ; :::; ξð6Þ ¼
1 0 0
0 0 0
0 0 0

2
64

3
75;

0 0 0
0 1 0
0 0 0

2
64

3
75;

0 0 0
0 0 0
0 0 1

2
64

3
75;

�
0 1 0
1 0 0
0 0 0

2
64

3
75;

0 0 1
0 0 0
1 0 0

2
64

3
75;

0 0 0
0 0 1
0 1 0

2
64

3
75: ð8Þ

The use of boundary conditions (2) guarantees that ε¼ ξε, and
similarly the use of Eq. (3) provides σ ¼ ξσ [6]. It provides a direct
possibility of computation of C from

σðkÞ
D E

¼ C : ξðkÞ; k¼ 1; :::;6 ð9Þ

or D¼ C
�1

from

εðkÞ
D E

¼D : ξðkÞ; k¼ 1; :::;6: ð10Þ

Note that it is advisable to symmetrize the computed tensors
C; D to get all required symmetries exactly. The Hill condition is
fulfilled for all cases (2)–(5). If C ε is computed from Eqs. (1), (2), (9)
and if Dσ is computed from Eqs. (1), (3), (10) then the following
bounds

D rCσ r Cεr Cε ð11Þ
are valid with inequalities among tensors in the energetic sense,
see Introduction. Cε ¼ CðxÞ� �

denotes the Voight and
D

�1
σ ¼ C�1ðxÞ

D E
provides the Reuss estimate ( CðxÞ� �

denotes again
averaging over the domain Ω). For more details see [6–11].

The homogenized tensor also depends on the size of the test
volume Ω and in the ideal homogeneous case all tests with
different boundary conditions provide the same elasticity tensor.
In a non ideal case, the difference

max ξATð3;2Þ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ : ðC ε�D

�1
σ Þ : ξ

q� 	
r‖C ε�Cσ‖ ð12Þ

can serve as a measure of macro-scale homogeneity and proper
size of Ω.

In the case of coal geocomposites, the upscaled elasticity tensor
obtained by numerical testing possesses general anisotropy, but
frequently we do not expect that some apparent anisotropy should
be presented in our macro-scale problem (it may not be the case in
another applications). Therefore, we can seek for isotropic elastic
tensor C iso, which will approximate well the anisotropic tensor C .
Note that similar problems of approximation appear also in
crystallography and seismology. Due to the simple representation
of the isotropic elasticity tensors

Ciso ¼ 3K IV þ2G ID; ð13Þ
where IV and ID, which serve for decomposition into volumetric
and deviatoric component are defined in Introduction. Using
derivation and orthogonality of IV and ID, it can be easily seen
that the best approximation ‖C iso�C‖¼min

K;G
is obtained for K ; G
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