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a b s t r a c t

Complexity of the mechanical behavior of geomaterials makes it very difficult to formulate constitutive
models (both at micro- and macro-scales) valid for different loading conditions and deformation
regimes. To make progress in understanding this complexity, we take advantage of the large set of data
for the synthetic rock analog GRAM1, a granular, frictional, dilatant, and cohesive material formed of
bonded rigid particles. We use also data from literature for two real rocks. All data are from conventional
triaxial tests conducted for a wide range of confining pressures covering the material behavior from
brittle fracturing to ductile flow. The data processing allowed to define both the yield function and the
inelastic volume strain as functions of the mean stress σm and the accumulated inelastic strain γp .
The internal friction coefficient and dilatancy factor calculated from these functions were shown to be
different but evolving very similarly with σm and γp for all the three materials. This allowed to relate the
yield and plastic potential functions and thereby to complete the constitutive formulation within the
framework of the classical elastoplasticity theory. The obtained results are also used to elucidate
the relation between the yield surface and failure envelope as well as the meaning of the internal friction
coefficient derived from the failure envelope which is routinely used in geomechanical applications and
which is very different from the internal friction coefficient derived from the yield function.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The complexity of the mechanical behavior of geomaterials makes
it very difficult to formulate mechanical (constitutive) models
particularly those valid for a wide range of loading conditions. Most
models are phenomenological, formulated in the framework of the
elastoplasticity theory (e.g., [1–12]). The problem with these models
is that they become progressively more complicated and include a
considerable number of parameters (ten and more) when trying to
approach real behavior of materials. The physical meaning of these
parameters is generally unclear. This forces the research to take into
account in one way or another the micromechanical processes in
defining the mesoscale and macroscale constitutive laws of geoma-
terials based on various approaches, hypotheses, and assumptions.
There exists extensive literature from different communities [13–22],
to mention only a few papers, most of which are on the flow of
cohesionless granular materials. The hope is that the complex real
behavior of geomaterials can be predicted from simple microscale
laws involving a small number of physically meaningful parameters
that can be determined from a few relatively simple experimental
tests. This hope however does not seem to have been fulfilled. To fit

the experimental data, complex microscale constitutive laws have to
be introduced that are also phenomenological in nature and are
frequently taken in the same form as macro constitute laws of
traditional elastoplasticity (e.g., [19,23,24]). Doing this inevitably
increases the number of the model parameters. Starting from
6 parameters for the standard Discrete Element Model (DEM),
D'Adetta and Ramm [23], for example, have gone up to 9, 13, and
18 independent parameters in more advanced models. One observes
hence the same tendency towards complication as in classical
elastoplasticity, but this time the uncertainty in constitutive relations
is shifted from macro- to micro-scale. Thus, it must be recognized
that none of the existing approaches is completely satisfactory.
Progress in description of geomaterial properties requires both
physics (particle)-based micromechanical efforts and phenomenolo-
gical approaches. Both require as much as possible good quality
experimental data characterizing geomaterials under different load-
ing conditions and deformation regimes.

In this paper we process a large data set for three materials. The
data analysis was done using the classical constitutive framework
which includes three principal parts: the yield condition, expressed
through the yield function FðσijÞ that defines the limits of the elastic
domain in the stress space; the flow rule defined by the plastic
potential function GðσijÞ, and the hardening rules defining the
evolution of FðσijÞ and GðσijÞ with progressive damage (inelastic
deformation) of the material (σij is the stress tensor, i; j¼ 1;2;3). To
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keep the track of evolution of F and G with inelastic deformation,
the inelastic strains or their scalar combinations are usually used. In
this work we use the inelastic equivalent shear strain γp. Defining
functions Fðσij; γpÞ and Gðσij; γpÞ represents a real challenge. They
are generally poorly constrained even for γp ¼ 0 (the initial yield
and plastic potential functions). Therefore in the applications, the
evolution of the constitutive properties (functions F and G) with γp

is typically ignored, while it is known from the theoretical analysis
[25–29] and numerical simulations [30–34] that this evolution
strongly impacts the material deformation and failure.

In the present work we define the constitutive functions using a
large data set (31 tests) for Granular Rock Analog Material GRAM1
(described in detail in [35]) as well as the data for Tavel limestone
(TL), 8 tests [36] and Solnhofen limestone (SL), 6 tests [37]. All data
are from compression conventional triaxial tests conducted for a
wide range of confining pressures covering the material behavior
from brittle fracturing to ductile flow. These data are shown in Fig. 1
and were processed in our previous paper [38] focused on the
definition of the volume inelastic strain εpðσm; γpÞ and dilatancy
factor βðσij; γpÞ. In the present paper we define/map the yield
functions Fðσij; γpÞ and the internal friction coefficient αðσij; γpÞ. As
expected, the plastic behavior is non-associated since αðσij; γpÞ and
βðσij; γpÞ do not coincide. However, these functions are shown to
evolve in a very similar manner with the stress state and with the
inelastic strain, which allows to relate F and G and to propose a
coherent constitutive formulation based on the experimental data
that may be applied at both macro and meso-scales.

2. Theoretical framework

Since σij is completely defined by its three invariants for
isotropic materials, the constitutive functions for such materials
can be expressed in terms of these invariants, the mean stress σm

(the 1st invariant), the von Mises' equivalent stress τ (the 2nd
invariant of the stress deviator tensor that can be expressed through
the 1st and 2nd invariants of the stress tensor), and the 3rd
invariant that can be taken as the Lode angle which is fixed in
our case. Therefore the constitutive functions depend only on σm, τ,
and γp. Considering that experimental data suggest deviatoric
associativity [3], these functions can be given in the form

F ¼ τ�Pðσm; γpÞ ð1Þ

G¼ τ�Q ðσm; γpÞ; ð2Þ
where P and G are functions of σm and γp. What is needed for both
theoretical analysis and numerical modeling is not function G itself,
but its derivatives gij ¼ ∂G=∂σij defining the direction of the incre-
ments of inelastic strain εpij

dεpij ¼ λgij ð3Þ

where λ is a non-negative scalar. Substituting Eq. (2) into Eq. (3)
yields

dεpij ¼ λ
sij
2τ

�1
3
Qσm

δij

� �
ð4Þ

where Qσm
ðσm; γpÞ ¼ ∂Q ðσm; γpÞ=∂σm, and δij is the Kronecker delta.

Calculating from Eq. (4) the increments of γp, dγp ¼ ð2depijde
p
ijÞ1=2,

yields dγp ¼ λ and

dεpðσm; γpÞ ¼ �Qσm
ðσm; γpÞdγp ð5Þ

where epij ¼ εpij�εpδij=3 and εp ¼ εpijδij. The coefficient (function)

relating increments of volume and shear inelastic strains is the
dilatancy factor

βðσm; γpÞ ¼ �∂εpðσm; γpÞ
∂γp

¼ Qσm
ðσm; γpÞ; ð6Þ
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Fig. 1. Mechanical data from the triaxial conventional compression tests for the three materials. q¼ σax�Pc is the differential stress, εax is the axial strain, and ε is the volume
strain (σax is axial stress and Pc is the confining pressure). The confining pressure for different curves (tests) is in MPa. (For GRAM1 only one curve for a given Pc is shown,
while more curves were used in the data processing). The data for GRAM1 is from [35,38], the TL data is from [36], and the SL data is from [37].
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