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a b s t r a c t

The displacement discontinuity method (DDM) is frequently used for modeling the behavior of fractures
in reservoir modeling. However, the DDM is not computational efficient for large systems of cracks,
limiting its application to small-scale situations. Recent fast summation techniques such as the Fast
Multipole (FM) Method accelerate the solution of large fracture problems, demanding linear complexity
O(N) in memory and execution time with very modest computational resources. In this work we use the
FM-DDM method to simulate fracture response while considering fluid flow through the fracture
network. This is a novel and efficient approach for solution of large scale coupled fluid flow-
geomechanical problem in naturally fractured reservoirs. Several case studies involving fracture
networks with several hundred thousands of boundary elements are presented. The results show a
good level of accuracy and computational efficiency compared to the conventional DDM. In addition, the
approach is shown to be very useful for the design of exploitation strategies in large-scale fracture
network situations. The relative positions between injectors and producers and the fracture permeability
variation with injection/extraction play an important role on the distribution of stresses in the fracture
network, which in-turn, influence the conditions for the fluid-flow such as fluid pressure and fracture
permeability.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Transient numerical simulations for the coupled fluid flow-
geomechanical problem using large number of fracture elements are
necessary for realistic representations of unconventional reservoirs for
proper design of exploitation strategies. The displacement disconti-
nuity method (DDM) is frequently used for modeling the behavior of
natural fractures in linear-elastic rocks [1]. It has been extensively
applied in mining and hydraulic fracturing [2–5] due to its semi-
analytical nature and by reducing the dimensionality of the problem.
However, DDM requires computing the influences among all elements
so the coefficient matrix of the system of equations is dense and
nonsymmetrical. This requirement impacts the computational perfor-
mance of conventional strategies, either direct or iterative, for the
solution of the system of equations when large numbers of elements
are involved, making DDM computationally intensive. Direct solvers
requires O(N2) memory and O(N3) execution time to compute the
coefficient matrix and solve a system of equations. On the other hand,
iterative methods still need O(N2) memory but reduce to O(kN2) the

number of operations for convergence in k iterations, assuming k⪡N in
case of well-conditioned systems. However, large-scale problems with
several hundred thousands of unknowns are still beyond the current
capability of common personal computers.

Recent fast summation techniques such as the Fast Multipole
Method (FMM) can accelerate the solution of large fracture
problems, demanding O(N) memory and operations easily
accessed from personal computers with modest computational
resources [9]. FMM relies on a strategy in which the matrix–vector
multiplication is accelerated without forming the coefficient
matrix explicitly. This acceleration is carried out by efficiently
calculating the interaction between elements using the same DDM
discretization but by recursive operations of a quad-tree structure
for computation and storage. It permits the solution of larger
problems, combining the robustness and accuracy of conventional
DDM but with superior performance.

Previous works using DDM and FMM has been limited [6,7] mainly
because of lack of mathematical developments for the fundamental
solutions of interest as well as high programming complexity. Peirce
and Napier [6] were the first to explore this area introducing a spectral
version of the FMM. They proposed a potential representation of the
fundamental solutions to approximate the normal and shear displace-
ment discontinuities, applying the method to the granular assemblies
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problem using up to 1800 boundary elements. On the other hand,
Morris and Blair [7] solved the problem of discontinuities within an
elastic solid for simulating a brittle rock fracture with 22,500 fracture
elements, approximating the far-field behavior of the fundamental
solutions by known decaying kernels. These studies [6,7] performed
modifications to the DD kernels in order to use the conventional FMM
mathematical developments for two-dimensional potential problems,
impacting accuracy and efficiency. More recently, Verde and Ghassemi
[8] developed a Fast Multipole Displacement Discontinuity Method
(FM-DDM) using a kernel-independent version of the FMM [9] which
does not require the implementation of multiple expansions of the
underlying kernel to compute geomechanical interactions in naturally
fractured reservoirs containing up to 100,000 fractures. In contrast to
the cited works which have focused only on evaluating static problems
dealing with network response, in this work we consider fluid flow
through the fractures, and take into account other relevant geome-
chanical effects such as non-linear joint deformation. The approach
improves upon previous works [3–5] allowing for rapid treatment of
large scale coupled fluid flow-geomechanical problem in fractured
reservoirs. The solution methodology finds transient changes of fluid
pressure and normal and shear displacement discontinuities during
injection and production operations accounting for joint deformation.
Several case studies involving fracture networks with several hundred
thousands of boundary elements are presented to evaluate and
compare accuracy and computational efficiency of the approach with
the conventional DDM, as well as its potential usefulness for the
design of exploitation strategies in large-scale situations.

2. Mathematical formulation

2.1. Geomechanical model (FM-DDM)

FM-DDM was developed to compute geomechanical interac-
tions in large-scale fracture network using both the DDM and FFM,
respectively, adopting for the latter a kernel-independent version
of the classical FMM [9], where analytic multipole and local
expansions are not required and using a preconditioned General-
ized Minimal Residual Algorithm (GMRES) to solve iteratively the
system of equations. In this model for given normal (n) and shear
(s) displacement discontinuities (see Fig. 1) in the fractures,
defined as the difference in displacement between the two sides
of the segment:

Di ¼ ui x1;0�ð Þ�ui x1;0þð Þ i¼ n; s ð1Þ

the normal and shear tractions caused by geomechanical
interactions among all fractures can be expressed mathematically
as the sum of near and far-field components:

ti ¼ tneari þtf ari i¼ n; s ð2Þ
where the near-field interactions are evaluated as the conven-
tional DDM showing a quadratic, O(N2), computational complexity,

and the far-field influences that involves most of the algebraic
products are calculated efficiently using FMM to reduce to O(N)
the cost proportional to the number of degrees of freedom (N).

2.1.1. Computation of the near-field interactions by DDM
DDM is an indirect BEM for modeling the normal (opening) and

shear (ride) displacement discontinuities of fractures embedded
in an infinite and elastic medium [1]. The method is based on
fundamental or analytical solutions to the problem of a finite
segment fracture centered in a Cartesian plane with constant
normal and shear discontinuities in displacement. Using DDM,
the tractions at a field point i caused by the effect of m fractures
at different source locations can be computed as the sum of the
contributions of the m fracture segment involved. If accounting for
joint deformation [3–5] and shear dilation [3–5] (normal opening
caused by shear displacement), the change in time of the traction
components to the normal ðΔtnÞ and shear ðΔtsÞ directions can be
written as
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where ΔPi

k represents the change of the fluid pressure inside a
fracture element i in a given time step k and the coefficients Asn,
Ass, Ann, and Ans represent the global influence containing multiple
spatial derivative of the function f x; yð Þ defined as
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where f is the relative position function between the element i and
j and upon the orientation and length of fracture element j, G is the
shear modulus, v represents Poisson's ratio of the solid medium,
and a the fracture half-length.

On the other hand, joint deformation effects are modeled in
Eqs. (3) and (4) using the normal (Kn) and shear (Ks) joint stiffness.
Based on the Goodman model [10], Kn is estimated via an explicit
hyperbolic equation as a function of the initial stiffness (Kni) and
maximum closure (Dnmax):

Kn ¼ Kni 1� ti0n
KniDn maxþti0n

 !�2

ð6Þ

where ti0n is the effective normal traction defined as

ti0n ¼ σin�Pi
k�1 ð7Þ

with

σin ¼ σ1xx sin β2j �2σ1xy sin βj cos βjþσ1yy cos β2j ð8Þ

where σ1xx , σ
1
yy, and σ1xy are the field stress components in xx, yy,

and xy directions, respectively.

2.1.2. Computation of the far-field interactions by FMM
2.1.2.1. Brief description of the FMM. The main idea behind the
FMM is to accelerate matrix–vector products (Ax) in iterative
algorithms without forming the coefficient matrix explicitly,
reducing then computation time and saving memory [11,12].
Algebraically, the product of the ith row of a N�N matrix K with

Fig. 1. Fracture segment embedded in a two-dimensional and infinite medium
showing constant normal and shear discontinuity displacements [1].
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