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a b s t r a c t

In recent years, Bonded-Discrete element methods (Bonded-DEM) and hybrid finite–discrete element
methods (FDEM) have become widely employed to model brittle fracturing processing in geomaterials.
These approaches possess the ability to explicitly simulate fracture and fragmentation, but necessitate a
large number of input parameters to be specified. Many of these parameters cannot be directly measured
or characterized via laboratory tests and therefore must be estimated via calibration procedures to attain
reliable results. In this work, a prescriptive procedure to arrive at a combination of input parameters for
the newly developed Y-Geo FDEM code is developed. The proposed procedure is applicable for
laboratory-scale simulations where some laboratory testing data for the material to be simulated is
available. It uses a combination of the known elastic parameters, uniaxial compressive strength, and
Brazilian disc strength of a material as calibration targets and limits the over-determined nature of the
calibration problem by considering the similitude of the resulting fracture patterns. The development of
this procedure represents a major step forward in obtaining reliable and consistent results using an
FDEM approach.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical models can serve as a useful tool to gain an under-
standing of the expected mechanical behaviour of rock and other
brittle geomaterials and aid in the decision making process for
rock engineering problems. Conventionally, numerical approaches
can be classified into two categories, namely, those based on
continuum formulations and those based on discontinuous or
discrete formulations. In general, continuum methods (e.g., finite
element methods (FEM), finite difference methods (FDM), and
boundary element methods (BEM)) are applicable when deforma-
tions are small and the medium is either free of fractures or
contains numerous uniformly distributed fractures. Conversely,
discontinuous approaches (e.g., discrete element method (DEM)
and discontinuous deformation analysis (DDA)) are suitable for
mediums that are moderately fractured and where individual
blocks are subject to large translations and rotations [1,2].

A common limitation of each of these conventional approaches is
the inability to capture the emergence of new discontinuities gener-
ated by brittle fracturing processes. Over the last two decades,
attempts to ameliorate this limitation have blurred the division

between conventional continuum and discontinuous techniques [3].
Although several continuum-based approaches that incorporate
emergent discontinuities have been developed (e.g., [4–6]), appro-
aches based on “bonded” discrete element methods have arguably
become the most popular. In particular, bonded particle models
(BPMs) within PFC2D/3D [7,8] as well as bonded assemblages of
triangular and Voronoi elements within UDEC [9] have been widely
used to simulate brittle fracturing in rock and other geomaterials
([10–18], among many others). In addition to bonded-DEM appro-
aches, the hybrid combined finite–discrete element method (FDEM)
pioneered by Munjiza et al. [19,20], and implemented in the ELFEN
[21], Virtual Geoscience Workbench [22], Y-Geo [23], and V-FDEM
[24] codes, has emerged as a promising technique to explicitly
simulate particle interaction, fracture, and fragmentation processes
in brittle geomaterials (e.g., [25–30]).

A key benefit of both the bonded-DEM and FDEM approaches is
that failure evolution laws do not need to be prescribed. Instead, the
macroscopic behaviour of the material develops as a result of the
evolution of micro-scale damage [11–13,31]. Nevertheless, this
ability to capture more complex processes is directly linked with
an increase in number of input parameters which must be correctly
specified. Unfortunately, many of these parameters, even those
based directly on fracture mechanics principles, cannot be measured
in the laboratory. Instead, these parameters must be established
through some calibration procedure. Generally the calibration of
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such models involves adjusting the micro-parameters via trial and
error until the macroscopic response of Unconfined Compressive
Strength (UCS) and Brazilian Disc (BD) strength models correspond
to the macroscopic response observed in the laboratory [11–13,30].

The characterization of micro-mechanical parameters via labora-
tory techniques represents a challenging task [32]. Many micro-
parameters cannot be easily measured and, at the same time, the
number of parameters makes calibration an over-determined pro-
blem. As a result, the validity of such modelling techniques is often
rightly questioned. To improve the confidence in the results of such
models, more prescriptive calibration procedures must be devised to
obtain suitable input parameters [33,34,15,16]. The purpose of this
paper is to develop and present a prescriptive calibration procedure
for laboratory-scale models in the 2D Y-Geo FDEM code developed by
Mahabadi et al. [23]. To do so, the fundamental principles of the
FDEM approach are first reviewed to ensure that the physical mean-
ing of all the required input parameters is clear. Subsequently, the
proposed calibration procedure, which involves performing several
UCS, BD, and Biaxial simulations, is outlined. As the steps of the
procedure are described, the sensitivity of the results to the various
input parameters is thoroughly examined. In demonstrating each step
of the procedure, the mechanical properties of a high strength micro-
fine sulphate cement mortar are considered. Thus, by the end of the
paper the Y-Geo input parameters to correctly simulate the mortar,
that can be used as a synthetic rock in laboratory studies (e.g., [35]),
are established. Although the calibration procedure is demonstrated
by considering the properties of a synthetic rock herein, it can be
employed for the simulation any brittle geomaterial.

2. Fundamental principles of FDEM

The combined finite–discrete element method (FDEM), a numer-
ical method initially developed by Munjiza et al. [19], permits the
dynamic simulation of multiple interacting bodies. A simulation can
begin with a single intact domain or a collection of discrete intact
bodies. As the simulation progresses, these bodies can deform
elastically, translate, rotate, interact, and fracture upon satisfying some
fracture criterion, thus producing new discrete bodies. The newly
generated bodies can then undergo further movement, interaction,
deformation, and fracture. The approach employs a combination of
FEM techniques to assess the deformation and evaluate the failure
criterion for fracturing and DEM concepts for detecting new contacts
and dealing with the translation, rotation, and interaction of discrete
bodies.

The calibration procedure developed herein is applicable to the
2D FDEM code, known as Y-Geo [32]. This code represents an
extension of the original Y2D code of Munjiza [20,22] that continues
to undergo development at the University of Toronto for geomecha-
nical applications. In the following subsections, the fundamental
principles of FDEM as implemented in the Y-Geo code are outlined.
In describing each of the key processes, including contact detection
and interaction, and damage and fracture, the governing parameters
which are later determined according to the proposed calibration
procedure are introduced and defined.

2.1. Governing equation

In FDEM, each intact body is discretized with a mesh composed
of 3-noded triangular elements. An explicit second-order forward
finite-difference integration scheme is employed to solve the
equations of motion for the discretized system and update the
nodal coordinates at each simulation time step. The generalized
governing equation can be expressed as [19]

M
∂2x
∂t2

þC
∂x
∂t

¼ F; ð1Þ

where M and C are the lumped system mass and damping
diagonal matrices, respectively; x is the vector of nodal displace-
ments; and F is the nodal force vector, which accounts for forces
related to external loading, the interaction of discrete bodies, the
elastic deformation of triangular elements, and the deformation of
crack elements.

The introduction of numerical viscous damping is required to
account for energy dissipation due to non-linear material beha-
viour and model quasi-static phenomena by dynamic relaxation
[20]. The matrix C is equal to

C¼ μI; ð2Þ
where μ is a constant viscous damping coefficient and I is the
identity matrix.

2.2. Contact detection and interaction

An FDEM simulation can involve a large number of interacting
discrete elements. To correctly capture this behaviour, contacting
couples (i.e., pairs of contacting discrete elements) must first be
detected. Detection is accomplished in Y-Geo using the No Binary
Search (NBS) method [36].

Subsequently, the interaction forces resulting from the detected
contacts can be defined. Contact interaction forces are calculated
between all pairs of elements that overlap in space. In the normal
direction, repulsive forces are applied to enforce a body impene-
trability condition, while in the tangential direction, frictional forces
are applied.

2.2.1. Repulsive forces
The repulsive forces between contacting elements (i.e., couples)

are calculated using a distributed contact force penalty function
method [37]. According to this method, it is assumed that pairs of
contacting couples penetrate into each other and thereby generate
contact forces that depend on the size and shape of the resulting
overlapping area.

Denoting two contacting discrete bodies as the target, Et, and
contactor, Ec, the overlapping area is S¼ Et⋂Ec , which is bounded by
ΓEt⋂Ec (Fig. 1a). The infinitesimal repulsive interaction force, df, due to
the infinitesimal overlapping area, dA, is given by the difference in the
gradients of the potential functions of the elements, φc and φt, at the
points Pt and Pc (which define dA) as

df ¼ grad φcðPcÞ�grad φtðPtÞ
� �

dA: ð3Þ
The total repulsive interaction force, fc on element Ec, is then

obtained by integrating the difference of the gradients of the
potential functions over the total overlapping area S as

fc ¼
Z
S ¼ Et \Ec

ðgrad φcðPcÞ�grad φtðPtÞÞ dA: ð4Þ

With each of the discrete elements Et and Ec discretized into n
and m finite elements, respectively (e.g., Fig. 1b), the potential
functions φc and φt can be expressed as a summation of the
potentials for the constituent finite elements as

φt ¼
Xn
i ¼ 1

φt i ð5Þ

φc ¼
Xm
j ¼ 1

φcj ð6Þ

and the total repulsive force, fc , can be expressed as a summation
over the finite elements:

fc ¼
Xn
i ¼ 1

Xm
j ¼ 1

Z
Et \Ec

ðgrad φcjðPcÞ�grad φt iðPtÞÞ dA: ð7Þ
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