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a b s t r a c t

This paper describes an application of adaptive sampling to geology modeling with a view of improving
the operational cost and efficiency in certain surface mining applications. The objectives are to minimize
the number of blast holes drilled into, and the accidental penetrations of, the geological boundary of
interest. These objectives are driven by economic considerations as the cost is, firstly, directly
proportional to the number of holes drilled and secondly, related to the efficiency of target material
recovery associated with excavation and blast damage. The problem formulation is therefore motivated
by the incentive to learn more about the lithology and drill less. The principal challenge with building an
accurate surface model is that the sedimentary rock mass is coarsely sampled by drilling exploration
holes which are typically a long distance apart. Thus, interpolation does not capture adequately local
changes in the underlying geology. With the recent advent of consistent and reliable real-time
identification of geological boundaries under field conditions using measure-while-drilling data, we
pose the local model estimation problem in an adaptive sampling framework. The proposed sampling
strategy consists of two phases. First, blast-holes are drilled to the geological boundary of interest, and
their locations are adaptively selected to maximize utility in terms of the incremental improvement that
can be made to the evolving spatial model. The second phase relies on the predicted geology and drills to
an expert based pre-specified standoff distance from the geological boundary of interest, to optimize
blasting and minimize its damage. Using data acquired from a coal mine survey bench in Australia, we
demonstrate that adaptively choosing blast-holes in Phase 1 can minimize the total number of holes
drilled to the top of the coal seam, as opposed to random hole selection, whilst optimizing blasting by
maintaining a reasonable compromise in the error in the stopping distances from the seam. We also
show that adaptive sampling requires, for accurate estimation, only a fraction of the holes that were
initially drilled for this particular dataset.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Certain surface mining procedures require modeling the under-
lying geology to optimize blasting. An incorrect notion of the

underlying geology can increase the damage caused by fragmen-
tation due to subsequent blasting particularly when dealing with
relatively horizontal geological boundaries.

A geology model can be acquired from past exploration data
which has been interpreted by geologists and geophysicists. How-
ever, such information only provides a rudimentary estimate of the
underlying geology because the exploration holes can be spaced
hundreds of meters apart. Therefore, it is imperative to have some
local spatial model of the underlying geology. This necessitates
drilling some blast holes through the target geological boundary
(the boundary of the target material that is being mined). Since
drilling through the target boundary is costly, it is desirable to
minimize the number of times we must do so. Thus, the problem
can be stated as acquiring an accurate local model of the underlying
geology to improve blast-hole design whilst minimizing the num-
ber of holes drilled through the target boundary. Furthermore, an
accurate local model also reduces the need to resort to extraneous
processes or using geophysical data to increase confidence in the
model's prediction. This is advantageous since these processes
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ordinarily lie outside the drill-blast loop and are not related to
core production.

With the advent of measure while drilling (MWD) data it has
become possible to build local geology models. MWD data
includes drill performance parameters such as rotary speed,
penetration rate, weight on bit, and torque which can be mon-
itored in real-time, and can be used to optimize the drilling
process [1]. A significant correlation between these parameters
and the ground-truthing strategy of geophysical logging, typically
used for lithology characterization, was demonstrated in [2]. Much
work has also shown the potential of these parameters in directly
characterizing the lithology [3–5]. Thus, using MWD data it is
possible to detect geological boundaries in real-time (in a con-
sistent manner), and therefore, learning of local geology models.
This process is illustrated in Fig. 1. Constructing local geology
models using MWD also relieves the operators from resorting to
geophysical logs for ground-truthing, varying interpretations of
drillers, or relying entirely on sparsely distributed a priori explora-
tion data. The measurements are collected by sensors mounted on
large drill rigs for blast hole drilling. An example of an autono-
mous blast hole drill rig is illustrated in Fig. 2.

The choice of holes drilled through the target boundary is
essential for building an accurate local model. For instance, it is
entirely likely that drilling five holes and having them spread over
the entire bench may actually yield a more accurate model than 10
holes in close proximity to each other. This, in fact, is a sampling
problem. Incorporating model feedback for iterative data selection
has been shown to result in accurate models with minimal effort,
which in the drilling context would translate to minimizing the
number of holes drilled through the target boundary. For instance,
after drilling the first hole through the target boundary, one can use
the model (locations of the boundary) to identify the next best
drilling location based on model feedback. This new location can
possibly be the farthest position from the current drilled blast hole,
because the model cannot confidently extrapolate its current mea-
surements to that location. This new blast hole is then drilled
through the target boundary, then the MWD data is appended to
the current training set, and the model is re-learned to suggest
another drilling location. This process can be repeated until the
model believes it can confidently extrapolate its predictions over the
entire survey bench. Such methods have been applied in practice
and are known to produce accurate models with very little training
data [6–9]. These techniques are known as adaptive sampling.

The objective of this paper is to investigate whether adaptive
sampling can produce accurate local geological models to optimize
blast-hole design with minimal drilling through the target bound-
ary. To this effect, we propose a 2-phase adaptive drilling strategy
which first iteratively identifies which holes to drill through the
target boundary to build some notion of the underlying geology,
after which it sweeps through the entire survey bench drilling each
hole to a pre-specified standoff distance from the target boundary to
minimize damage due to blasting. The standoff distance is an expert
based pre-specified parameter that if applied to a perfect model of
the underlying geology will result in optimal blasting with minimal
damage due to fragmentation. We show that our 2-phase sampling
strategy minimizes the number of holes drilled through the target
boundary whilst maintaining a reasonable compromise in the
stopping distances (deviation from ideal standoff distance).

The rest of this paper is structured as follows: in Section 2 we
present some necessary background and terminology. In Section 3
we present the proposed adaptive sampling algorithm along with
a baseline counterpart. The data, demonstration of adaptive
sampling, experimental setup and results are presented in
Section 4. A discussion of the results and the approach is then
presented in Section 5. We conclude the paper in Section 6 with a
discussion on directions for future research.

2. Preliminaries and background

In this section we present the terminology used in the paper
followed by a background on adaptive sampling and the spatial
modeling approach.

2.1. Terminology

We now present some basic terminology used throughout the
paper. It suffices to classify a blast hole into the following
categories: discovery holes (DH), exploitation holes (EH), mistaken
holes (MH), and total drilled holes (TDH). These are defined as
follows. DH are holes intentionally drilled through the target
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Fig. 1. Building a local spatial model of the underlying two class geological
boundary using MWD data. Note the Lithology at each point 〈x; y; z〉 is characterized
by MWD data collected at that point.

Fig. 2. An autonomous blast hole drill rig used for collecting MWD data.
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