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a b s t r a c t

A mechanisms-based fracture model applicable to a broad class of earth and earth-like materials is
presented. The key features the model captures are: (1) material anisotropy; (2) rate-sensitive
directional fracture; (3) dilatational friction; (4) dynamic overstress in loading extremes, where the
rate of supplied energy is not fully compensated by the rate of the energy redistribution and release and,
lastly, (5) spatial stochasticity due to material heterogeneity. In comparison with more traditional
phenomenological descriptions, the contribution of the proposed approach is the utilization of tensor
representation theory; the theory is suitable for converting observed deformation and fracture
mechanisms into a precise mathematical description of the material’s behavior.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Despite notable successes, the development of a predictive
fracture model for geomaterials still poses a challenge. A broad
review of fracture mechanisms in rocks is presented in [1,2]. The
most common approach in modeling brittle fracture relies on
incorporating damage characteristics into the Gibbs free energy
[3–5]. Several constitutive models have been proposed, and among
them the microstructural models discussed in [6–8] are worth
noting. The microplane model [9,10] is the closest to our approach
and is based on the simple idea of tracking fracture at microplanes
with pre-determined orientations. In this setting, the fracture
planes carry information about the damage process in a physically
justifiable manner. Furthermore, an assumption made in the
microplane model is that the macro-damages can be treated
as weakly interacting cracks. Since the crack opening strain is
collected from the individual micro-cracks, this description is
suitable for predicting the material behavior at early stages of
the damage process. The cracks are characterized in terms of the
crack surface area, while their orientations define the relevant
stress tractions. In other approaches, viscous-like stress intensity
factors are incorporated into the material description [11]. The time
dependence is shown to replicate observed rock strengthening in

the Hopkinson Bar strain rate regime (103/s to 104/s). However, it is
not clear whether the relationship holds at extreme strain rates
(shock conditions).

The proposed approach utilizes results obtained in [12,13],
where the tensor representation theory is shown to be a very
useful tool in the hands of a modeler [14]. First, we determine the
dominant deformation and fracture mechanisms in a geomaterial.
The selected mechanisms are incorporated into the mechanisms-
based visco-plasticity model. In geomaterials the material’s
strength is mildly strain rate dependent until the point when the
rate of supplied energy becomes comparable with the rate of the
energy redistribution and release due to cracking. At extreme
conditions the balance is violated and the material has an excess of
energy. We study the mechanism by which, instead of a single
dominant crack, the dynamically overstressed heterogeneous
material experiences complex fractures and, in this manner,
efficiently converts the externally supplied energy into the crack
surface formation energy.

2. Tensor representations

In the proposed fracture model, fracture processes are
described in terms of dyadic products Nij ¼ ninj, where unit vector
nk defines the crack orientation. We want the tensor to be
expressed in terms of another symmetric tensor (for instance,
stress). In here, we choose the base tensor to be Tki ¼ Tik and, then,
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express Nij in terms of Tkl such that NT
ij ¼NT

ij Tklð Þ. The tensor
representation theory [14] says that any symmetric second order
tensor can be represented by another symmetric tensor, if the
original tensor and its representation have the same first, second
and third invariants. From the Cayley–Hamilton theorem we write

NT
ij ¼ α0δijþα1T

D
ij þα2T

D
ikT

D
kj; ð1Þ

where the deviator of Tkl is TD
kl ¼ Tkl�Tiiδkl=3. There are three

representations of the dyadic product each aligned with a princi-
ple orientation of Tkl. First, we notice that the tensor representa-
tion NT

ij taken to the first, second, and third power is still the same
tensor Nij ¼NikNkj ¼NikNklNlj and their traces are equal to one. As
a result, we find three solutions in terms of α0; α1; α2f g and,
consequently, we have three tensor representations. It can be
shown that the eigenvector consists of T1 ¼N1

ij α10; α
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Tij. For instance, when

tensor Tkl is stress then the eigenvector consists of principal
stresses σ1; σ2; σ3f g, where σ14σ24σ3. The first set of the alpha
parameters is
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The second representation is described by
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and the third one becomes
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In all the cases, the angle is φ¼ sin �1J3ð27=4J32Þ1=2, while the

second and third invariants are J2 ¼ TD
ij T

D
ij =2 and J3 ¼ TD

ikT
D
klT

D
li =3,

respectively.

3. Friction-induced visco-plasticity

Frictional plastic deformation consists of slippages along crack
surfaces and there is an out-of-plane dilatation due to crack
roughness. The shear strain rate is defined in terms of the
Mises–Schleicher concept developed independently by von Mises
and Schleicher [15]. In our case, the mechanism of the frictional

shear flow is

Mij ¼
ffiffiffi
3

p Sijffiffiffiffi
Jσ2

p þq Jσ2
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δij ð5Þ

such that

_εpij ¼
1
2
Mij _e

p
eq: ð6Þ

The flow tensor Mij is co-rotational with stress deviator
Sij ¼ σij�δijσkk=3 and is a function of the second invariant of stress
deviator Jσ2 ¼ SijSij=2. Also, it includes the dilatation part scaled

through internal friction q¼ q0=½1þ
ffiffiffiffiffiffiffi
3Jσ2

p
=σq

� �nq �, where q0 is
friction parameter. Friction is affected by shear (second invariant
of stress deviator), where σq and nq are constants. The equivalent
plastic strain rate _epeq is coupled with an equivalent stress. From the
requirement of measure invariance (independence from the frame
of description) of plastic power ðσij _εpij ¼ σeq _e

p
eqÞ, the equivalent

stress becomes σpeq ¼Mijσij=2¼
ffiffiffiffiffiffiffi
3Jσ2

p
þ3pq=2. In the next step,

we develop a constitutive relationship between the equivalent
stress and strain rate. In here, the relationship is proposed in a
pseudo-linear form

_epeq ¼ _Λp
σpeq
σp0

ð7Þ

where σp0 is the material’s strength consisting of static strength σS0
and dynamic overstress σD0 such that σp0 ¼ 1�ηc

� �
σS0þσD0
� �

. The
role of the two strengths and damage ηc

� �
are discussed later. We

correct the linear strain rate dependence given by σpeq=σ
p
0

� �
and

make it non-linear by using a rate-sensitive factor _Λp ¼
_e0N _etN=_e

0
N

� �ωp

, where the parameter ωp is a material constant.

Lastly, we choose the scaling parameter _e0N to be equal to 1=s.

The normalized total strain rate is _etN ¼
ffiffiffiffiffiffiffiffiffi
_εtij _ε

t
ij

q
=2. In this construc-

tion, we allow the effective stress exponent to vary throughout the
deformation process. At an advanced stage of the plastic deforma-

tion, where _εpij-_εtij we have _epeqp σpeq=σ
p
0

� �1=ð1�ωpÞ; thereby assur-

ing a smooth elasto-plastic transition. As geomaterials generally
exhibit low strain rate dependence, the parameter ωp is expected
to have values only slightly smaller than one.

4. Fracture tensor

In geomaterials, the fracture processes occur in tension, com-
pression and shear. Multiple tensile micro-cracks form on
microplanes and are predominantly aligned with the direction
of maximum tensile stress. The extent of the damage is
correlated with the amount of work required for the micro-
cracks to become fully opened [16]. In order to monitor the
damage process, we construct a fracture tensor, whose rate is
defined as follows

_Ωij ¼ _GfN
σ
ij; ð8Þ

where the tensor Nσ
ij ¼ ninj is a dyadic product of vector ni aligned

with the direction of maximum tensile stress. In Section 2, we
have expressions for the three representations Nσ

ij σklð Þ and in here

we take the first one defined by parameters α10; α
1
1; α
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. Fracture

energy is equal to the work needed for opening the cracks, thus
_Gf ¼ Nσ

ijσij
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� lcN
σ
kl _ε

e
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. The normal component of traction vector

is Nσ
ijσij and the rate of crack opening displacements becomes

lcN
σ
kl _ε

e
kl. Lastly, the characteristic fracture length lc is correlated
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