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Abstract: The Markov chain approximation method, a primary approach for computing
optimal values and controls for stochastic systems, was extended to nonlinear diffusions with
delays in a recent book. The convergence of many forms of algorithms was proved. The path,
control and/or reflection terms can all be delayed. Reflection terms occur in communications
models, where they correspond to buffer overflows. If the control and/or reflection terms are
delayed, the memory requirements can make the problem intractable. Recasting the problem in
terms of a “wave equation” yields practical algorithms with much reduced computational needs.
We outline the approach, concentrating on forms motivated by applications to communications,
and give data illustrating the potential.
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1. INTRODUCTION

The Markov chain approximation methods Kushner and
Dupuis (2001) are commonly used to compute optimal
values and controls for stochastic systems. The approach
is simple: Approximate the process by a controlled finite-
state Markov chain that satisfies certain minimal prop-
erties, then solve the Bellman equation. The proofs of
convergence are probabilistic and do not depend on an-
alytical properties of the Bellman equation. This makes
the methods robust and converge under weak conditions,
and is essential when there are delays, where little is
known about the properties of the Bellman equation. In
the proof, one interpolates the optimally controlled chain
to a continuous-time process and then shows that this
converges to an optimal diffusion. Many ways of getting
the approximations are in Kushner and Dupuis (2001).

The methods were extended to controlled general nonlin-
ear delayed diffusion models in Kushner (2008). If the con-
trol and/or reflection terms are delayed, then the memory
requirements can make even simple problems intractable.
Then we took a promising approach where the delay equa-
tion was represented in terms of a stochastic “wave equa-
tion” whose numerical solution yields the optimal costs
and controls. Algorithms were developed with much re-
duced memory needs. Convergence theorems were proved,
but little attention was given to applications. This was
partially remedied in Kushner (2009) which adapted them
to concrete models, and gave data illustrating the poten-
tial power. The problems did not have delayed reflection
terms, which occur in communications models, where they
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correspond to buffer overflows, and where this data is sent
to the admissions controller via a transportation delay.
We continue the development, emphasizing models arising
in communications, involving both delayed controls and
reflection terms. For clarity, some details overlap those
of Kushner (2009), which did not cover delayed reflection
terms, a main concern here. Numerical data illustrates the
type of information that could be obtained. Such problems
would be intractable by other current method: e.g., using
time discretizations over the delay interval. The model
and assumptions are in Section 2. Section 4 represents
the solution in terms of a stochastic wave equation. The
Markov chain approximation method is reviewed for the
no-delay case in Section 5 and extended to the delay case
in Section 6. Numerical data is in Section 7.

2. THE MODEL, NOTATION, AND ASSUMPTIONS

Let IRr = Euclidean r-space. The IRr-valued path process
x(·) = {xi(·), i ≤ r} is confined to a convex polyhedron
G ∈ IRr. by the boundary reflection process z(·). Let
yi(·) =component of z(·) due to reflection from the ith face
of G, with reflection direction di. Then z(t) =

∑
i diyi(t).

If a component yi models a buffer over/underflow, then
di is an inward normal. See the figure in Section 3. The
model is the diffusion equation, where θ̄ =maximum delay
and w(·) is a Wiener process:

dx(t)=dt

0∫
−θ̄

b(x(t+ θ), u(t+ θ), θ)dµa(θ)+σ(x(t))dw(t)

+c(x(t), u(t))dt+ dz(t) + dt

0∫
θ=−θ̄

p(θ)dθy(t+ θ).

(1)



The last term models the delayed reflection or buffer
under/overflow. We use θ̄ for all components. If the max
delay depends on component, there is only a notational
change. The initial conditions are the delayed components
over the delay interval: e.g., x̂ = {x(s),−θ̄ ≤ s ≤ 0}, etc.
If there is no reflection term, but the process is stopped
on reaching a target boundary, add a termination cost and
drop all z(·), y(·) terms.

Assumptions. The non-restrictive standard conditions
on {di} are those in (Kushner and Dupuis, 2001, Sec-
tion 5.7), to which the reader is referred. 1 The con-
trols take values in a compact set U . The functions
b(·), c(·), p(·), σ(·), k(·) are bounded and continuous, and
there is a unique weak-sense solution to (1) for each initial
condition and control. All functions of θ are zero for
θ < −θ̄ and θ > 0. µa(·) is a finite measure on [−θ̄, 0]
with µa([−t, 0]) → 0 as t → 0. To assure that x(·) is well
defined, there is θ̄0 ∈ (0, θ̄] such that p(θ) = 0 for θ ≥ −θ̄0.

The cost function. With x̂, û, ŷ denoting the canonical
values of the (path, control, reflection) segments on [−θ̄, 0],
β > 0, vector q, and control u(·), we concentrate on the
cost function W (x̂, û, ŷ, u) defined by

Eux̂,û,ŷ

∞∫
0

e−βt [k(x(t), u(t))dt+ q′dy(t)] . (2)

Eux̂,û,ŷ =expectation. Set V (x̂, û, ŷ) = infuW (x̂, û, ŷ, u).

3. AN EXAMPLE FROM COMMUNICATIONS

The example is an AIMD-type (additive increase, multi-
plicative decrease) internet rate control model from Alt-
man and Kushner (2005). It is illustrative of problems
where the memory requirements could be intractable. Al-
though derived as a heavy traffic limit, its features are
typical of other models. There is a set of sources whose
rates are controlled, and many uncontrolled sources with
short transmissions. After a delay, the packets are received
by a “bottleneck router.” Buffer overflow packets from
the controlled sources are not acknowledged, causing a
decrease in their transmission rate. Let x2(·) =scaled con-
trolled source rate, x1(·) =scaled content of the bounded
buffer, θ̄ the round-trip transportation delay, and q0 the
scaled router processing rate. The model is 2

dx1(t)=[x2(t)−q0] dt+σdw(t) + dL1(t)− dU1(t),

dx2(t) = q1dt+ q2u(t− θ̄)dt
−q3dU1(t− θ̄)x2(t− θ̄) + dL2(t).

(3)
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U1(·) represents the scaled buffer overflow. Li(·) can in-
crease only when the xi = 0, assuring non-negativity.
1 For a discussion of reflected diffusions see Kushner (2001).
2 It is also a form of the congestion control method RED Kunniyur
and Srikant (2001), where one marks packets for notifications to their
sources with a probability depending on the route state.

w(·) is a Wiener process representing the scaled centered
uncontrolled disturbances. 3 The control u(t) is used to
signal the source to reduce or increase the rate. The source
rate is controlled by the constant increase rate q1 > 0,
and the delayed overflow dU1(t − θ̄) and control u(t − θ̄).
The variables are measured and control determined at the
router. Its values are sent to the sources and the result
is seen at the router after the roundtrip delay θ̄. The
centering that yields w(·) is accounted for by the choice
of the net processor rate q0. Cost functions would penalize
buffer overflow and queue length, and reward rate.

Systems like (3), if uncontrolled, have large buffer over-
flows. Present controls depend only on the current state at
the router. Instability arises since, at each t, they do not
account for the signals sent on [t − θ̄, t), whose effect has
not yet been seen at the router, leading to overcontrol. The
data in Section 7 shows that the use of controls that take
the past actions into account can improve the performance
considerably.

4. REPRESENTING X(·) BY A WAVE EQUATION

The use of a wave eqn. to model delay systems is not new
but little use has been made of it for nonlinear systems.
The algorithm is based on the following equation, justified
by Theorem 4.1. For −θ̄ < θ ≤ 0, define χ0(·) and χ1(·)
by (dt, dθ are differentials with respect to t, θ)
dχ0(t)=χ1(t, 0)dt+c(χ0(t), u(t))dt+σ(χ0(t))dw(t)+dz0(t),

dtχ
1(t, θ) = −dθχ1(t, θ) + p(θ)dy0(t)

+b(χ0(t), u(t), θ) [µa(θ + dt)− µa(θ)] .
(4)

The boundary condition is χ1(t,−θ̄) = 0. The reflection
term z0(·) is for χ0(·), taking values in G. (4) is formal,
but will be the basis of a convergent algorithm. The
solution will be well-defined by (7). Initial conditions are
χ0(0) = x(0) and χ1(0, θ) equal to

θ∫
−θ̄

b(x(γ − θ), u(γ − θ), γ)dµa(γ) +

θ∫
−θ̄

p(γ)dγy0(γ − θ).

(5)
The cost function is (2) with χ0(t) replacing x(·).

A semigroup representation. A key role is played
by the semigroup of the wave equation dtχ

1(t, θ) =
−dθχ1(t, θ). Define Φ(·), acting on functions of θ:

(Φ(t)f(·))(θ) =
{
f(θ − t), −θ̄ ≤ θ − t ≤ 0,
0, otherwise. (6)

Then the solution to (4) is well-defined by

χ1(t, θ) = Φ(t)χ1(0, θ) +

t∫
0

Φ(t− s)p(θ)dy0(s)+
t∫

0

Φ(t− s)b(χ0(s), u(s), θ) [µa(θ + ds)− µa(θ)] .
(7)

The next theorem justifies the use of (4).

Theorem 4.1. χ0(·) = x(·). (The proof is in Kushner
(2008).)
3 The Wiener process in Altman and Kushner (2005) is due to
the central limit theorems used to get the approximation. It also
represents the unpredictability of the system.
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