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a b s t r a c t

The capacity of 17 functions to represent the size distribution of fragmented rock is assessed on 1234
data sets of screened fragments from blasted and crushed rock of different origins, of sizes ranging from
0.002 to 2000 mm. The functions evaluated are Weibull, Grady, log-normal, log-logistic and Gilvarry, in
their plain, re-scaled and bi-component forms, and also the Swebrec distribution and its bi-component
extension. In terms of determination coefficient, the Weibull is the best two-parameter function for
describing rock fragments, with a median R2 of 0.9886. Among re-scaled, three-parameter distributions,
Swebrec and Weibull lead with median R2 values of 0.9976 and 0.9975, respectively. Weibull and
Swebrec distributions tie again as best bi-component, with median R2 of 0.9993. Re-scaling generally
reduces the unexplained variance by a factor of about four with respect to the plain function;
bi-components further reduce this unexplained variance by a factor of about two to three. Size-prediction
errors are calculated in four zones: coarse, central, fines and very fines. Expected and maximum errors in
the different ranges are discussed. The extended Swebrec is the best fitting function across the whole
passing range for most types of data. Bimodal Weibull and Grady distributions follow, except for the
coarse range, where re-scaled forms are preferable. Considering the extra difficulty in fitting a five-
parameter function with respect to a three-parameter one, re-scaled functions are the best choice if data
do not extend far below 20% passing. If the focus is on the fine range, some re-scaled distributions may
still do (Weibull, Swebrec and Grady, with maximum errors of 15–20% at 8% passing), but serious
consideration should be given to bi-component distributions, especially extended Swebrec, bimodal
Weibull and bimodal Grady.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The assessment of fragmentation by blasting and the subse-
quent crushing and grinding is an important issue in mining.
Operation control and optimization require the description of size
distributions in several stages, as fragmentation characteristics
influence the mucking productivity, the crusher throughput and
energy consumption, the plant efficiency, yield and recovery, and
the price itself of the end product in the case of industrial minerals
and aggregates. Models, specifications and process data of frag-
mentation by blasting [1–9], crushers, mills, screens, belts, mineral
ducts, bins, cyclones, and plant operation in general [10–20] use
distribution functions. However, the domain of sizes or fractions
passing in which a given distribution function does really repre-
sent the rock fragment size is often neglected. This work tackles
this point by examining the errors that can be expected across
a broad percent passing range when rock fragmentation is described
by different distribution functions.

Rock fragment sizes have been represented for many years,
almost exclusively, by means of the Rosin–Rammler (or Weibull)
distribution [21–23]; in the last several years, the recently devel-
oped Swebrec function [24,25] has gained a relatively high profile
as it has been shown to represent the fragmented rock sizes with
advantage over the Weibull both in the fines and in the coarse
ends. Djordjevic [6] used bimodal Weibull for describing rock
fragmented by blasting and Blair [26] studied the behavior of the
lognormal and log-logistic bimodals for the same purpose. A wider
comparison of functions, namely the Weibull, Swebrec, Grady
[27,28] and Gilvarry [29–32], and their bi-component varieties
was presented in 2009 [33], with a limited number (28) of data
sets. That methodology was applied [34] to a much larger data
base, made up of 448 sets of screened fragment size data of rock of
a variety of origins and fragmentation processes; the lognormal
and its bi-component were also included at that point among the
distributions analyzed.

The errors in predicting sizes were determined for each of the
distribution functions across the range of data, dividing the
passing range in four zones: coarse (480%), central (80–20%),
fine (20–2%) and very fine (o2%). Swebrec was by far the best
single component function in all zones, with errors comparable to
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the best bi-components in the coarse and central. Indeed, it is not
surprising that a three-parameter function such as the Swebrec
outdoes two-parameter ones like Weibull, Grady and lognormal,
and raises the question of how the latter ones (for which the
independent variable x covers the semi-infinite interval 0rxo1)
would behave if a re-scaled, finite-interval-transformed form of
them (including as third parameter a maximum size, as Swebrec
does) were employed. This matter has also been addressed [35] by
comparing single, plain functions with their re-scaled variants,
and with the Swebrec function itself. The most relevant outcome
of that study was that the re-scaled Weibull matched Swebrec as
best distributions fitting the four ranges.

The present work extends the comparison to re-scaled vs.
bi-component distributions, in an exercise to assess the benefits
of the increased number of parameters of the latter, which
complicates the fitting problem even with state-of-the-art rou-
tines. As work progressed, the experimental data base nearly
tripled from the 448 data sets in [34,35], to 1234 in the present
paper, thereby improving the statistical significance and giving the
conclusions a greater validity.

2. The functions

Table 1 lists the distributions tested; their expressions are given
below in their cumulative distribution function (CDF) form, F.

2.1. Plain, single-component:

Weibull–Rosin–Rammler (abbreviated here WRR [21–23]):

FWRR ¼ 1�exp½�ðx=xcÞn�; 0rxo1 ð1Þ
where xc and n are the scale and shape parameters, respectively.

Grady (abbreviated GRA [27,28]):

FGRA ¼ 1�½1þðx=xgÞα�exp½�ðx=xgÞα�; 0rxo1 ð2Þ
where xg and α are the scale and shape parameters, respectively.

Lognormal (LGN):

FLGN ¼Φ½ðlog x�xmÞ=s�; 0rxo1 ð3Þ
where Φ is the standard normal cumulative distribution; xm and s
are the location and scale parameters (the mean and the standard
deviation of the natural logarithm of x).

Log-logistic (LGL):

FLGL ¼
1

1þðx=x50Þ� γ ; 0rxo1 ð4Þ

where x50 (the median size) and γ are the scale and shape
parameters, respectively.

Gilvarry (GIL [29–32]):

FGIL ¼ 1�expf�½ðx=x1Þþðx=x1Þ2þðx=x1Þ3�g; 0rxo1 ð5Þ
where x1, x2 and x3 are first, second and third order scale
parameters.

2.2. Re-scaled

The distributions in Eqs. (1)–(5), which reach the unit value
only at infinite size, can be transformed by scaling the abscissa
with a maximum size xmax and forcing an infinite value of the
variable at that point, thereby bringing the function value to 1; this
is accomplished by substituting ξ for x:

ξ¼ ðx=xmaxÞ
1�ðx=xmaxÞ

¼ x
xmax�x

; 0rxrxmax ð6Þ

The resulting function FT(ξ), with a semi-infinite (0rξo1)
domain, is thus transformed into a finite x domain (0rxrxmax)

when expressed in the form FT(x). As an example, the re-scaled
Weibull distribution is, from Eqs. (1) and (6):

FTWRR ¼ 1�exp½�ðξ=ξcÞn� ¼ 1�expf�½xðxmax�xcÞ=xcðxmax�xÞ�ng;
0rxrxmax ð7Þ
Similarly for the other distributions. Re-scaling transformed

functions are referred here with the parent function acronym
preceded by a T; they have one more parameter (xmax) than the
original function.

One more re-scaled distribution, without a semi-infinite coun-
terpart, is the Swebrec (SWE [24,25]):

FSWE ¼
1

1þ½ log ðxmax=xÞ= log ðxmax=x50Þ�b
; 0rxrxmax ð8Þ

where x50 is the scale parameter (median size) and b a shape
parameter.

2.3. Bi-component

Bi-component functions, usually representing bi-modal distri-
butions, can be formed as a linear combination of two single-
component ones as follows:

FBi ¼ ð1� f ÞFðx;π1Þþ f Fðx;π2Þ; 0rxo1 ð9Þ
where F is any of the functions in Eqs. (1)–(5); f(0r fr1) is the
fraction of the modality with a parameter set π2, so that 1–f is the
fraction of the modality π1. For example, the bi-component log-
logistic is

FBiLGL ¼ ð1� f ÞFLGLþ f FLGL

¼ ð1� f Þ 1
1þðx=x50;1Þ� γ1 þ f

1
1þðx=x50;2Þ� γ2 ; 0rxo1 ð10Þ

Bi-component functions are referred here with the parent
single component function acronym preceded by Bi. The BiWRR
was used by Djordjevic [6] in his two-component model of blast
fragmentation; the BiLGN and BiLGL have been used by Blair [26].

For the Swebrec case, a so-called extended version (ExSWE)
exists [24,25] similar to the bi-components but, like its single
component sister, of re-scaled character:

FExSWE ¼
1

1þa½ log ðxmax=xÞ= log ðxmax=x50Þ�bþð1�aÞ½ððxmax=xÞ�1Þ=ððxmax=x50Þ�1Þ�c
;

0oxrxmax ð11Þ
whose behavior at large x is that of Eq. (8) and at small x is that of
a power distribution with exponent c; a is a partition coefficient
similar to f in Eq. (9).

Table 1
Distribution functions.

Distribution Domain No. of parameters Acronym

Weibull or Rosin–Rammler Semi-infinite [0, 1) 2 WRR
Grady Semi-infinite [0, 1) 2 GRA
Lognormal Semi-infinite [0, 1) 2 LGN
Log-logistic Semi-infinite [0, 1) 2 LGL
Gilvarry Semi-infinite [0, 1) 3 GIL
Re-scaled Weibull Finite [0, xmax] 3 TWRR
Re-scaled Grady Finite [0, xmax] 3 TGRA
Re-scaled lognormal Finite [0, xmax] 3 TLGN
Re-scaled log-logistic Finite [0, xmax] 3 TLGL
Swebrec Finite [0, xmax] 3 SWE
Re-scaled Gilvarry Finite [0, xmax] 4 TGIL
Bi-component Weibull Semi-infinite [0, 1) 5 BiWRR
Bi-component Grady Semi-infinite [0, 1) 5 BiGRA
Bi-component lognormal Semi-infinite [0, 1) 5 BiLGN
Bi-component log-logistic Semi-infinite [0, 1) 5 BiLGL
Extended Swebrec Finite [0, xmax] 5 ExSWE
Bi-component Gilvarry Semi-infinite [0, 1) 7 BiGIL
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