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A B S T R A C T

Being extremely soft, brain tissue is among the most challenging materials to be mechanically quantified. Despite
recent advances in mechanical testing of ultra-soft matters, there still exists a need for robust procedures to
analyze their behavior at large deformation. In this paper, it is shown how failing to taking into account the
precise boundary conditions can result in substantial variation from the “assumed” ideal behavior, even for the
case of simple loading conditions such as the uniaxial mode. For an accurate analysis, the mathematical mod-
eling is combined with the finite element simulation to interpret the mechanical behavior of the brain tissue
based on the comprehensive experiments conducted by Budday et al. (2017). It is demonstrated herein that only
an Ogden hyperelastic model with both negative and positive nonlinearity constants can predict the mechanical
behavior of the brain tissue in tension and compression, and the tension-compression asymmetry might arise
from the difference in compressibility behavior in tension and compression. This hypothesis is utilized for
modeling the mechanical behavior of the brain tissue in uniaxial loading condition and exhibits excellent
agreement with the experiments. This study also provides a comprehensive explanation for nonlinear analysis of
soft matters, in general, and the brain tissue, in particular, with thoroughly describing the concept of hyper-
elasticity and modeling incompressible or compressible behaviors utilizing the Ogden strain energy function.

1. Introduction

Mechanical interaction of the human body with its surrounding
environment is known to be a major factor in its heath or disease
conditions. Due to the hierarchical nature of the living matters, their
mechanical investigation entails a multiscale analysis that expands a
wide range of length scales from the subcellular to tissue levels (Cloots
et al., 2013; Cowin and Doty, 2007; Fung, 2013; Humphrey and
O’Rourke, 2015; Mofrad and Kamm, 2006). Such analyses can be per-
formed via physical/mechanical modeling that give valuable insight
into the mechanisms involved in the biomechanics of the tissue de-
formation and provide predictive patterns that aim at reducing the in-
juries in traumatic conditions and increasing the remodeling rate
during healing (Holzapfel and Ogden, 2017). A proper implementation
of such models, however, requires a thorough understanding of the
mechanical properties of the tissue and the constitutive relations that
govern its deformation behavior.

Among human body organs, brain is arguably the most vulnerable
unit during mechanically induced trauma (Ahmadzadeh et al., 2014;
Faul et al., 2010; Giordano et al., 2014; Prabhu et al., 2011). In addi-
tion, some aspects of its growth and folding processes have been

recently shown to be mechanically driven (Bayly et al., 2014; Kuhl,
2016; Tallinen et al., 2016). Nevertheless, the extremely soft nature of
this tissue has made its mechanical testing a challenging task. Me-
chanical quantification of the brain tissue was started more than half a
century ago, however, the results for mechanical stiffness of this tissue
based on earlier studies are very scattered within a range of several
orders of magnitude (Chatelin et al., 2010). With recent developments
in experimental techniques and increase in accuracy and rate of data
acquisition of the instruments, it seems that the results based on dif-
ferent studies with different testing methods and procedures are de-
monstrating a better agreement with one another (Budday et al., 2015,
2017; Franceschini et al., 2006; Huston III, 2014; Johnson et al., 2013;
MacManus et al., 2015; Miller and Chinzei, 2002; Moran et al., 2014;
Rashid et al., 2012, 2013, 2014; Samadi-Dooki et al., 2017, 2018; Van
Dommelen et al., 2010; Weickenmeier et al., 2016). Accordingly, the
constitutive models that relate the deformation of the tissue to the force
can be confidently calibrated using the recent experimentally obtained
data.

Brain tissue exhibits a nonlinear mechanical behavior with notable
rate and regional dependency. To address its nonlinearity, hyperelastic
constitutive laws have been extensively used for this tissue (Budday
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et al., 2017; Feng et al., 2013; Giordano et al., 2014; Kaster et al., 2011;
Mihai et al., 2017, 2015; Moran et al., 2014). In this way, the stress-
strain relations can be obtained by taking partial derivatives of the
strain energy function which is assigned to the tissue behavior. Among
different hyperelastic energy functions, the Ogden model has been
shown to appropriately predict the nonlinear behavior of soft tissues
including the brain (Budday et al., 2017; Mihai et al., 2017, 2015;
Ogden, 1997). The generalized energy function of the Ogden hyper-
elastic material may be presented as:1
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in which μj, mj, and Dj are the material parameters pertaining to the
shear modulus, degree of nonlinearity, and compressibility, respec-
tively, J is the determinant of the deformation gradient, and EI ( )m

1
( )j

represents the first invariant of the mjth order Seth-Hill strain tensor
E m( )j . The parameter N in this equation determines the number of terms
required to appropriately fit the material behavior. Obviously, the
Ogden hyperelastic energy function depends on the form of the strain
that is considered for the material behavior. This form depends sub-
stantially on the magnitude and sign of the nonlinearity parameter mj,
and as will be discussed later in this paper, can control the tension-
compression asymmetry of the material. More importantly, for a hy-
perelastic energy function to be physically meaningful in general, there
are some mathematical criteria that need to be satisfied as described by
Attard and coworkers (Attard, 2003; Attard and Hunt, 2004). The most
important conditions which are relevant to the analysis of soft tissues
include:

1. The energy function cannot attain a negative value for any de-
formation.

2. At the undeformed state (zero principal strains), the strain energy
function must possess a zero value, which according to condition 1,
is the minimum value as well.

3. At singularities (zero or very large principal stretches), the strain
energy function should approach positive infinity.

4. The stresses derived from such energy functions must approach
negative and positive infinity for deformation with zero or very
large principal stretches, respectively.

These conditions have been elaborately discussed in a recent pub-
lication by Moerman et al. (2016) in which it has been described how
selecting a certain form of the Seth-Hill class of strains can affect the
validity and appropriateness of the resulting strain energy function.
Accordingly, the authors of that article came up with a hybrid form of
the strain tensor that satisfies the aforementioned criteria and allows a
better control over tension-compression asymmetry without altering

the nonlinearity degree.
The last term in the right-hand-side of Eq. (1) pertains to the com-

pressibility of the material. In most of the publications on the me-
chanical analysis of the brain, this tissue has been considered to be
incompressible (Franceschini et al., 2006; Laksari et al., 2012; Mihai
et al., 2017). Accordingly, this term is usually eliminated from the
mathematical formulation for Ogden hyperelastic modeling of the brain
tissue. Since the brain tissue possesses a considerable interstitial and
intracellular fluid content (up to 0.8 g/ml (Whittall et al., 1997)), the
incompressibility condition seems to be reasonable, especially in com-
pression. However, recent numerical analysis of the hyperelasticity of
the brain tissue has shown that this assumption is not necessarily cor-
rect. For example, Moran et al. (2014) calibrated different hyperelastic
models based on the experiments performed by Jin et al. (2013). Al-
though Moran et al. (2014) did not discuss the concept of compressi-
bility in their publication, the volume change during deformation can
be readily investigated by rebuilding the same 3D object in ABAQUS
(with the same boundary conditions, number and type of elements, and
loading condition) and incorporating the numerical values for the
Ogden hyperelastic model as presented in Table 1 of that publication.
The variation of the volume ratio based on this analysis is demonstrated
in Fig. 1 which shows considerable changes for both tensile and com-
pressive loading conditions for all regions of the brain. Although this
level of volume changes seems unrealistic (especially in compression),
the results indicate that the incompressibility assumption for the brain
might need to be revisited.

Another important consideration in model calibration is to appro-
priately consider the boundary conditions of the experimental setup
and their conformity with the modeling assumptions. For uniaxial ex-
periments on the brain tissue, the size of the samples excised from the
tissue is usually small with aspect ratios close to unity (Budday et al.,
2017; Jin et al., 2013). For such sample size and shape, one needs to
appropriately consider the deviation from a homogeneous deformation.
For tensile experiments, top and bottom of the sample are usually glued
to the instrument crosshead surfaces which causes a non-even lateral
deformation of the sample (see Fig. 7(a)–(c)). The same scenario hap-
pens for samples glued to the crosshead surfaces in compression
(Fig. 7(d)–(f)). Even for non-glued samples in compression, the friction
between the tissue and the crosshead surfaces can cause a level of in-
homogeneity in compressive deformation of the sample (Miller, 2005).
To appropriately compensate for deviation from a homogeneous elastic
field assumption, Miller proposed a method in which the shape of the
lateral deformation of the sample during no-slip boundary condition
uniaxial deformation is calculated and incorporated in the deformation
function for obtaining the material constants of the brain tissue (Miller,
2001, 2005; Miller and Chinzei, 2002). Some other researchers have
used numerical analysis using finite element method and minimizing
the objective function for the difference between simulation results and
experimental data in an iterative loop to optimize the model parameter
values (Moran et al., 2014). While the former method is mathematically
rigorous and can be used for cylindrical samples only, the latter is time
consuming and might result in numerical outputs for model parameters

Table 1
Ratio of volume change ( )V f

Vi in terms of Poisson’s ratio and the longitudinal stretch for uniaxial deformation of a cuboidal sample with four different measures of
strain.
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1 There are alternative presentations for the Ogden hyperelastic energy function,
however, the authors utilized the one which is used in ABAQUS in order to maintain the
consistency between the modeling and the simulation processes.
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