Author's Accepted Manuscript

In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements

Pahlevanzadeh, H.R. Bakhsheshi-Rad, Hamzah

www.elsevier.com/locate/imbbm

PII: S1751-6161(18)30308-4

https://doi.org/10.1016/j.jmbbm.2018.03.016 DOI:

JMBBM2725 Reference:

To appear in: Journal of the Mechanical Behavior of Biomedical Materials

Received date: 29 December 2017 Revised date: 8 March 2018 Accepted date: 12 March 2018

Cite this article as: F. Pahlevanzadeh, H.R. Bakhsheshi-Rad and E. Hamzah, Invitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements, Journal of the Mechanical Behavior Biomedical Materials. https://doi.org/10.1016/j.jmbbm.2018.03.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCR

In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer

containing fluorapatite and graphene oxide bone cements

F. Pahlevanzadeh¹, H.R. Bakhsheshi-Rad^{2,3,*}, E. Hamzah³

¹Department of Tissue Engineering, Najafabad branch, Islamic Azad University, Najafabad, Iran.

²Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic

Azad University, Najafabad, Iran

³Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering,

Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Johor, Malaysia

Corresponding author: H.R. Bakhsheshi-Rad (rezabakhsheshi@gmail.com; rezabakhsheshi@pmt.iaun.ac.ir)

Abstract

In this study, a bone cement consisting of poly methyl methacrylate (PMMA)-poly caprolactone

(PCL)-fluorapatite (FA)-graphene oxide (GO) was synthesized as bone filler for application in

orthopedic surgeries. The FA and GO particulates were homogenously distributed in the PMMA-

PCL polymer matrix and no defects and agglomeration were found in the PMMA-PCL/FA/GO

bone cement. The in-vitro bioactivity result exhibited that addition of FA and GO to the polymer

cement (PMMA-PCL) improved the apatite formation ability on the surface of polymer. The

results also showed that addition of FA to the polymer bone cement escalated the compressive

strength and elastic modulus while reducing elongation to 8±2%. However, after addition of GO

into the PMMA-PCL/FA bone cement, both compressive strength and elongation considerably

increased to 101±5 MPa and 35±6%, respectively. Furthermore, tensile tests exhibited that

inclusion of GO was favorable in improving the tensile modulus, UTS and elongation of the

PMMA-PCL/FA bone cement. The cytotoxicity test pointed out that MG63 osteoblast cells

viability increased to 279±15% after addition of FA and GO to the PMMA-PCL polymer bone

1

Download English Version:

https://daneshyari.com/en/article/7207071

Download Persian Version:

https://daneshyari.com/article/7207071

<u>Daneshyari.com</u>