Author's Accepted Manuscript

Biomechanical characterization of human dura mater

Dries De Kegel, Julie Vastmans, Heleen Fehervary, Bart Depreitere, Jos Vander Sloten, Nele Famaey

www.elsevier.com/locate/jmbbm

PII: S1751-6161(17)30568-4

DOI: https://doi.org/10.1016/j.jmbbm.2017.12.023

Reference: JMBBM2626

To appear in: Journal of the Mechanical Behavior of Biomedical Materials

Received date: 22 September 2017 Revised date: 8 December 2017 Accepted date: 22 December 2017

Cite this article as: Dries De Kegel, Julie Vastmans, Heleen Fehervary, Bart Depreitere, Jos Vander Sloten and Nele Famaey, Biomechanical characterization of human dura mater, *Journal of the Mechanical Behavior of Biomedical Materials*, https://doi.org/10.1016/j.jmbbm.2017.12.023

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Biomechanical characterization of human dura mater

Dries De Kegel a,* , Julie Vastmans a,* , Heleen Fehervary a , Bart Depreitere b , Jos Vander Sloten a , Nele Famaey a

a. Biomechanics section, KU Leuven, Leuven, Belgium
b. Department of Neurosurgery, University Hospital Gasthuisberg, KU Leuven, Leuven,
Belgium
* authors contributed equally

Abstract

A reliable computational model of the human head is necessary for better understanding of the physical mechanisms of traumatic brain injury (TBI), car-crash investigation, development of protective head gear , the study of meningiomas, intraeranial hematomas and advancement of dural replacement materials. The performance and biofidelity of these models depend largely on the material description of the different structures present in the head. One of these structures is the dura mater, the protective layer around the brain.

We tested five human dura maters specimens, with samples at different locations, using planar biaxial tests. We describe the resulting stress-strain curves using both the anisotropic Gasser-Ogden-Holzapfel (GOH) model and the isotropic one-term Ogden model. The low-strain section of the curves is also described using a Neo-Hookean formulation.

From the stress-strain curves, the mechanical behaviour of the dura mater can be described as highly nonlinear and isotropic. No inter-specimen variability or location-dependency was identified. In conclusion, the GOH model captures the highly nonlinear behaviour better compared to the Ogden model. Finally, this paper provides reliable parameters for these models to be used in future finite element simulations.

The obtained stress-strain curves reveal highly nonlinear but isotropic behaviour. A significant amount of inter- and intra-specimen variability is noticed, whereby the latter does not seem to be influenced by location. The GOH model

Download English Version:

https://daneshyari.com/en/article/7207218

Download Persian Version:

https://daneshyari.com/article/7207218

<u>Daneshyari.com</u>