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Abstract: Proposed is a novel iterative method for solving semidefinite programs. It exploits
the ideology of cutting hyperplane through the center of mass of a convex body. To estimate
the center of mass, we use a random walk technique known as the Hit-and-Run algorithm.
The results of numerical simulations are compared to those obtained with presently available
approaches. Robust versions of the method are considered, where the coefficient matrices contain
norm-bounded uncertainties.
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1. INTRODUCTION AND OVERALL SCHEME OF
THE METHOD

In this section we formulate the problem under considera-
tion and present a brief schematic description of the main
ideas underlying our method.

Considered is the standard semidefinite program (SDP) of
the form

min cTx s.t. A(x)
.
= A0 +

n∑
i=1

xiAi ≤ 0, (1)

where c ∈ R
n and Ai ∈ R

m×m, i = 0, . . . , n, are
known symmetric matrices; the notation A ≤ 0 stands for
negative semidefiniteness of the matrix A. The constraint
inequality in (1) is called a linear matrix inequality (LMI),
and the convex set

Dfeas = {x ∈ R
n : A(x) ≤ 0}

is referred to as the feasible domain of this LMI.

This problem is known to be one of the key problems in
the theory of linear matrix inequalities Boyd et al. (1994).
It has numerous applications in various fields of system
theory and control, and at present there exist efficient
solution techniques based on interior-point methods; e.g.,
see Nesterov and Nemirovskii (1994).

Inspired by the recent results in the rapidly developing
area of randomized methods in control system analysis and
design Tempo et al. (2005), we propose a novel approach
to solving problem (1), which is based on totally different
ideas. The iterative method that we developed leans on
random walks, estimation of the center of mass of a convex
set—the feasible domain Dfeas, and uses the new notion
of boundary oracle for LMIs.

The cornerstone components of our approach are

(a) the cutting hyperplane ideology, which is used to
compute iteratively a sequence of embedded subdomains
Dk+1 ⊂ Dk ⊂ Dfeas and monotonically decrease the
value of the objective function f(x) = cTx;

(b) the so-called Hit-and-Run (HR) algorithm for esti-
mating the center of mass of Dk required in item (a)
above;

(c) a boundary oracle which is needed for implementation
of the HR-algorithm.

Specifically, let Dk ⊂ Dfeas be the domain obtained at
the kth step of the iterative method under consideration.
For simplicity, it is assumed that Dfeas is bounded in order
to guarantee the boundedness of Dk. Using HR-algorithm,
we generate Nhr random points distributed approximately
uniformly on Dk and adopt their average xk as an estimate
of the center of mass of Dk. The point xk might as well be
taken to compute the current estimate fk = cTxk of the
objective function. Next, the hyperplane

Hk = {x ∈ R
n : cT(x − xk) = 0}

is drawn to cut off the “idle” portion of Dk thus reducing
it to

Dk+1 = {x ∈ R
n : x ∈ Dk, cTx ≤ cTxk} ⊂ Dk,

and the process is repeated with the set Dk+1. In other
words, the convex set Dk+1 is bounded by the LMI
constraints in (1) and the half-space {x ∈ R

n : cT(x −
xk) ≤ 0} defined by the hyperplane Hk. Schematically,
the behavior of the method is represented in Fig. 1 for the
two-dimensional case where the vector c is taken in the
form c = (0, 1)T.

Under the assumption that xk is a reasonably accurate
estimate of the true center of mass, the lemma in Radon
(1916) on the measures of symmetry of convex bodies
is used to obtain an estimate on the guaranteed rate of
decrease in the objective function. Thus, the method is
expected to have a geometric convergence rate. Note that
by no means do we intend to estimate the optimal point
x∗ = arg min

x∈Dfeas

cTx, but rather evaluate the optimal value

f∗ of the objective function.
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Fig. 1. Schematic representation of the method.

2. CORNERSTONES

We now present the techniques and results underlying each
of the items (a)–(c) above.

2.1 Cutting hyperplane

The implementation of item (a) and the guaranteed re-
duction of the value of the objective function is based on
the following lemma.

Lemma 1 Radon (1916). Let D ⊂ R
n be a convex bounded

body and g ∈ D be its center of mass. Denote by H an
arbitrary (n − 1)-dimensional hyperplane through g, and
let H1 and H2 be the two hyperplanes supporting to D and
parallel to H. Denote by

r(H)
.
=

min{dist(H, H1), dist(H, H2)}

max{dist(H, H1), dist(H, H2)}

the ratio of the distances from H to H1 and H2, respec-
tively. Then

min
H

r(H) ≥
1

n
.

As applied to the setup in this paper, let H1 and H
denote the two hyperplanes through the two successive
iterations xk and xk+1 of the method, and let H2 be
the supporting hyperplane through the optimal point x∗.
Assuming that the exact value of the center of mass is
known, the following estimate is readily available:

fk+1 − f∗ ≤ κ(fk − f∗), κ =
n

n + 1
,

where f∗ is the optimal value of the objective function and
fk = cTxk is the estimate obtained at the kth iteration.

Notably, to the best of our knowledge, this result has never
been used in optimization, in contrast to similar results on
the guaranteed volumetric reduction, which are typical to
various modifications of the ellipsoid method.

2.2 Hit-and-Run algorithm

We now describe the Hit-and-Run algorithm, an efficient
randomized technique exploited in this paper in the esti-
mation of the center of mass of the sets Dk. This random

walk algorithm originally proposed in Smith (1984) is
simple to describe. It applies to a bounded convex body
D ∈ R

n and returns a random point z having approxi-
mately uniform distribution on D. The arithmetic mean
of this distribution is then adopted as an estimate of the
center of mass.

Specifically, an initial point z0 in the interior of D is
selected, and let zj be the point obtained at the jth step
of the algorithm. A random direction y is generated (say,
in the form ξ/‖ξ‖, where ξ is a Gaussian random vector
with zero mean and identity covariance matrix, and ‖ · ‖
is the euclidean vector norm). The 1D-line zj + λy is
considered and the points zj and zi of its intersection with
the boundary of D are computed. The next-step point zj+1

is then generated randomly uniformly on the chord [zj , zj ].

In Smith (1984); Lovász (1999) it has been shown that the

sequence of random vectors {zi}Nhr

1 generated in such a
way forms a discrete Markov chain having the property of
uniform ergodicity. In other words, the distribution of the
random vector zi tends to the limiting uniform distribution
on D with geometric rate; this property is referred to as
fast mixing. The mixing rate depends on the shape of the
set D and on the “position” of the initial point. The best
results are obtained if the distribution of z0 is close to the
uniform (the so-called warm start of the HR-algorithm),
and the set D is isotropic, i.e., it has “equal dimensions”
along all directions.

There exist other random walk techniques; the HR-
algorithm is chosen here because it is simple to implement,
produces practically reasonable approximations to the uni-
form distribution, requires minimum a priori information
about the set D, and can also be applied to nonconvex sets
under mild extra assumptions.

It should be noted that the HR-algorithm has been first
applied to solving convex optimization problems in Bert-
simas and Vempala (2004), however the overall method in
that paper essentially differs from the one proposed here.

2.3 Boundary oracle

To perform the HR-algorithm over Dk, we need to ef-
ficiently compute the intersections of a 1D-line and the
boundary of Dk, which is accomplished via use of the
semidefinite boundary oracle developed in Polyak and
Shcherbakov (2006). The core of this oracle is the lemma
below.

Lemma 2 Polyak and Shcherbakov (2006). Let A < 0
and B = BT, then the minimal and the maximal values of
the parameter λ ∈ R retaining the negative definiteness of
the matrix A + λB are given by

λ =




max
λi<0

λi,

−∞, if all λi > 0;

(2)

and

λ =




min
λi>0

λi,

+∞, if all λi < 0,

(3)



Download English Version:

https://daneshyari.com/en/article/720744

Download Persian Version:

https://daneshyari.com/article/720744

Daneshyari.com

https://daneshyari.com/en/article/720744
https://daneshyari.com/article/720744
https://daneshyari.com

