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Abstract: We address the problem of output feedback synchronization of certain
chaotic systems, under parameter uncertainty. That is, given a master system,
the objective is to design a slave system that copies the dynamics of the master
and reconstructs both the state and the values of the constant parameters of the
master system. Hence, the synchronization problem that we address enters in
the framework of Pecora and Carroll and relies on adaptive observer theory. In
particular, the conditions that we impose take the form of persistency of excitation.
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1 Introduction

Since the celebrated paper (Pecora and Carroll
1991) master-slave synchronization of chaotic sys-
tems has gained an increasing interest, specifically
but not only, due to the applications of this problem
into secured communication; see for instance (Shi et
al. 2004, Amirazodi et al. 2002, Kolumban et al. 1998)
to cite a few. Using chaotic systems to transmit and
receive information has several advantages as opposed
to more conventional methods relying on periodic car-
rier signals: 1) chaotic modulation offers a better per-
formance since the correlation of waves is lower than
in the case of conventional periodic carriers; 2) it may
out-perform conventional methods in the case of noisy
channels; 3) chaotic modulation presents robust wide-
band communications; etc.

In the classic master-slave or, transmitter-receiver
scheme, a master circuit is tunned to transmit in-
formation using a chaotic carrier signal. The signal
is received by a “slave” circuit which, if it can be
constructed identically to the master, the information
may be decoded out of the chaotic carrier. In practice,
it is impossible to repeat the master circuit with the
exact values of its components even when these values
are known. To this, we add the fact that the informa-
tion is transmitted through a non-ideal channel. All

this uncertainty stymies considerably the faculty of re-
constructing the useful information.

In this paper, we present an adaptive approach to
synchronization which relies on adaptive observer de-
sign. As it has been shown in the important paper
(Huijberts and Nijmeijer 1997) the synchronization
problem may be recasted in a problem of observer-
design, well known in the literature of control sys-
tems theory. Different observer-based synchronization
schemes have been proposed in the literature, e.g. re-
lying on sliding modes: (Boutat-Baddas et al. 2004);
high-gain: (Amirazodi et al. 2002); Luenberger-based
observers: (Boutayeb et al. 2002), etc. We propose
an adaptive observer for a class of systems that cov-
ers certain chaotic systems. Then, we give sufficient
conditions to achieve master-slave synchronization in
the event of parameter uncertainty and assuming that
only an output – possibly part of the master’s state –
is available for measurement.

The rest of the paper is organized as follows. In
coming section we introduce some notation and defi-
nitions of stability that set the framework for our main
results. In Section 3 we present an adaptive observer
for a class of detectable systems and give examples of
chaotic systems that fit in our framework. In Section
5 we present the proofs of our findings, before conclud-
ing with some remarks.



2 Preliminaries

Notation. We say that a function φ : R≥0×R
n → A

with A a closed, not necessarily compact set, satis-
fies the basic regularity assumption (BRA) if φ(t, ·) is
locally Lipschitz uniformly in t and φ(·, x) is measur-
able. We denote the usual Euclidean norm of vectors
by |·| and use the same symbol for the matrix induced
norm. A function α : R≥0 → R≥0 is said to be of
class K (α ∈ K), if it is continuous, strictly increasing
and zero at zero; α ∈ K∞ if, in addition, it is un-
bounded. A function β : R≥0 ×R≥0 → R≥0 is of class
KL if β(·, t) ∈ K , β(s, ·) is strictly decreasing and
limt→∞ β(s, t) = 0. We denote the solution of a dif-
ferential equation ẋ = f(t, x) starting at x◦ at time t◦
by x(·, t◦, x◦); furthermore, if the latter are defined for
all t ≥ t◦ we say that the system is forward complete.

Definition 1 (Uniform global stability) The origin of

ẋ = f(t, x) (1)

where f(·, ·) satisfies the BRA, is said to be uniformly
globally stable (UGS) if there exists κ ∈ K∞ such that,
for each (t◦, x◦) ∈ R≥0 × R

n, each solution x(·, t◦, x◦)
of (1) satisfies

|x(t, t◦, x◦)| ≤ κ(|x◦|) ∀ t ≥ t◦ . (2)

Definition 2 (Uniform global asymptotic stability)
The origin of (1) is said to be uniformly globally
asymptotically stable (UGAS) if it is UGS and uni-
formly globally attractive, i.e., for each pair of strictly
positive real numbers (r, σ), there exists T > 0 such
that for each solution

|x◦| ≤ r =⇒ |x(t, t◦, x◦)| ≤ σ ∀ t ≥ t◦ + T .

Definition 3 (UES) The origin of the system ẋ =
f(t, x) is said to be uniformly exponentially stable on
any ball if for any r > 0 there exist two constants k
and γ > 0 such that, for all t ≥ t◦ ≥ 0 and all x◦ ∈ R

n

such that |x◦| < r

|x(t, t◦, x◦)| ≤ k |x◦| e−γ(t−t◦) . (3)

Definition 4 (USPAS) The origin of (1) is said to be
uniformly semiglobally practically asymptotically sta-
ble (USPAS) if for each positive real numbers ∆ > δ >
0 and σ > 0 there exist T > 0 and κ ∈ K∞ such that
|x(t, t◦, x◦)| ≤ κ(|x◦|) for all t ≥ t◦ ≥ 0 and

|x◦| ≤ ∆ =⇒ |x(t, t◦, x◦)| ≤ σ + δ ∀ t ≥ t◦ + T .

3 Adaptive Observers With
Persistency of Excitation

Consider a nonlinear system of the form

ẋ = A(y)x+ Ψ(x)θ +B(t, x) (4)

where x ∈ R
n is the state vector; θ ∈ Θ is a vec-

tor of unknown constant parameters and Θ is a com-
pact of R

m; y = Cx is a measurable output; the pair
(A(y(t)), C) is detectable, that is y(t) ≡ 0 implies that
x(t) → 0; the functions Ψ andB are globally Lipschitz,
i.e. there exist ψM and bM such that, for any vectors
ζ ∈ R

m, with |ζ| = 1, x1, x2 ∈ R
n and all t ≥ 0,

|Ψ(x1)ζ −Ψ(x2)ζ| ≤ ψM |x1 − x2| (5a)
|B(t, x1)−B(t, x2)| ≤ bM |x1 − x2| . (5b)

Moreover, there exists ψ0 ≥ 0 such that

max
|ζ| = 1

∣∣ζ�Ψ(0)ζ
∣∣ ≤ ψ0 . (6)

Under these conditions we propose for systems of the
form (4), the adaptive observer

˙̂x = A(y)x̂− L(t, y)C(x− x̂) +B(t, x̂) + Ψ(x̂)θ̂ (7)

where L(·, ·) satisfies the basic regularity assumption.
Using (4), and defining x̄ := x̂ − x, θ̄ := θ̂ − θ the
estimation error dynamics is given by

˙̄x = [A(y)− L(t, y)C ]x̄+ Ψ(x̄+ x(t))
×θ̄ + Φ(t, x̄, x(t), θ) (8a)

Φ(t, x̄, x(t), θ) := [ Ψ(x̄+ x(t))−Ψ(x(t)) ]θ +
B(t, x̄+ x(t))−B(t, x(t)) . (8b)

Conditions (5) and the assumption that θ ∈ Θ where
Θ is a compact of appropriate dimension imply that
there exists θM > 0 such that

|Φ(t, x̄, x(t), θ)| ≤ ψMθM |x̄|+ bM |x̄| =: φM |x̄| . (9)

The following assumption on the observer gain L guar-
antees that the state estimation errors tend uniformly
to zero; roughly the condition is that the gain L,
through the measurable output y(t), makes the error
dynamics persistently excited.

Assumption 1 Define yt := y(t) for each t. There
exists a globally bounded positive definite matrix
function P (·) such that pM ≥ |P | and, defin-
ing Ā(t, yt) := A(yt) − L(t, yt)C, −Q(t, yt) :=
Ā(yt)�P (t)+P (t)�Ā(yt)+ Ṗ (t) we have the following
for all t ≥ 0 and all yt ∈ R

m

1. Q(t, yt) ≥ 0

2. There exist µ and T > 0 such that

∫ t+T

t

Q(τ, yτ )dτ ≥ µI > 0 , ∀ t ≥ 0 (10)

3. There exists qM > 0 such that qM ≥ |Q(t, yt)| .
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