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a b s t r a c t

The systematic development of subject-specific computer models for the analysis of

personalized treatments is currently a reality. In fact, many advances have recently been

developed for creating virtual finite element-based models. These models accurately

recreate subject-specific geometries and material properties from recent techniques based

on quantitative image analysis. However, to determine the subject-specific forces, we need

a full gait analysis, typically in combination with an inverse dynamics simulation study. In

this work, we aim to determine the subject-specific forces from the computer tomography

images used to evaluate bone density. In fact, we propose a methodology that combines

these images with bone remodelling simulations and artificial neural networks. To test the

capability of this novel technique, we quantify the personalized forces for five subject-

specific tibias using our technique and a gait analysis. We compare both results, finding

that similar vertical loads are estimated by both methods and that the dominant part of

the load can be reliably computed. Therefore, we can conclude that the numerical-based

technique proposed in this work has great potential for estimating the main forces that

define the mechanical behaviour of subject-specific bone.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Subject-specific models are becoming increasingly important

because of the clinical demands of patient-centred treatments.

Advancements in different current technologies including com-

puted tomography (CT), magnetic resonance imaging (MRI), and

gait analysis have enabled the creation of more realistic

subject-specific computational-based bone models (Lekadir
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et al., 2015). Subject-specific modelling often starts with pre-
viously acquired images that can provide information regarding
the geometry and density distribution of the individual bone
properties. However, direct subject-specific estimation of bone
loads through in vivo imaging remains challenging (Zadpoor
and Weinans, 2015).

The combination of subject-specific joint and muscle
force-based models with consistent bone geometry into finite
element-based (FE) models could be a very important
advancement for creating subject-specific models that allow
for predictive analyses of personalized treatments. Vahdati
et al. (2014) combined gait analysis and a subject-specific
musculoskeletal model with subject-specific bone geometry
in a computational bone remodelling methodology for pre-
dicting bone density distribution. The results confirmed that
the predicted bone density distribution in the proximal femur
was drastically influenced by the inclusion of subject-specific
loading conditions. González-Carbonell et al. (2015) used the
subject-specific geometry and material properties to study
the tibial torsion using CT. Additionally, Carey et al. (2014)
created subject-specific FE models of the tibiofemoral joint
using dynamic stereo-radiography data and kinematic ana-
lysis. Although these aforementioned models provided full
information on bone mechanical properties, several difficul-
ties could arise before their methods can be applied clinically
due to the amount of initial information required.

Moreover, musculoskeletal models have been useful tools
for virtual orthopedic surgery. Inverse dynamics techniques
were used in gait analysis to calculate the net joint torques that
the musculoskeletal system produces during human locomo-
tion (Liu et al., 2009; Favre et al., 2012). In recent decades,
multiple methods have been developed to improve the perfor-
mance of subject-specific models (Fluit et al., 2012, 2014).
Carbone et al. (2012) showed errors in the estimated position
of muscle attachment sites that affected muscle force predic-
tions. Subsequently, Carbone et al. (2015) combined morphing
of bone surfaces with muscle volumes and functional optimiza-
tion of muscle-tendon architecture to create a musculoskeletal
geometry dataset. This part was linked with muscle-tendon
attachment sites and lines-of-action (Pellikaan et al., 2014), or
muscle volumes (Carbone et al., 2012), showing that subject-
specific models resulted in more reliable outcomes, whereas
conventional anthropometric scaling laws were inadequate and
provided less realistic muscle activity predictions. These com-
plex models were, however, troublesome with regard to their
immediate application to patients.

For most of these methodologies, it is not easy to prove
the clinical benefits due to the complex process involved and
their large computational cost. In addition, estimating mus-
culoskeletal loads requires information about the movements
of the individual patient. Note that it is very difficult to
measure loads in vivo using non-invasive procedures.

Several studies have attempted to estimate loads by solving
the inverse bone remodelling problem using different numer-
ical approaches. In fact, Fischer et al. (1995) developed an
optimization procedure that adjusted the magnitude of each
basic load in 2D to achieve the desired bone density. Bona et al.
(2006) proposed a contact algorithm for density-based load
estimation and used a method to distinguish between different
modes of locomotion of animals. More recently, Christen et al.

(2012) developed a bone loading estimation algorithm to predict
loading conditions through calculating the loading history that
produces the most uniform strain energy density on the bone
tissue. Campoli et al. (2012) were the first to use the artificial
neural network (ANN) approach to predict femur loads from the
bone density distribution. These authors combined a wavelet
decomposition technique with an ANN to estimate the loading
parameters of the femur. Zadpoor et al. (2013) also used ANN to
predict tissue adaptation loads from a given density distribution
of trabecular bone in a 2D example of the femur. Garijo et al.
(2014b) presented a numerical methodology in which the
specific load that the bone was actually supporting was pre-
dicted through different mathematical techniques by utilizing
the bone density distribution obtained from bone remodelling
simulations. They used a single femur, and they theoretically
predicted the loading conditions that induced a virtual bone
density distribution with good accuracy using ANN.

However, in this work we present a general computational-
based methodology to determine the forces that a subject-
specific tibia is supporting from the CT images of this specific
patient. For this purpose, we used five subject-specific tibias,
from which knowing their bone geometry and density dis-
tribution, we will predict their specific loading conditions.
Finally, to quantitatively validate the predictive capacity of
this novel methodology, we will compare these forces with
those obtained for each subject from an individual-based gait
analysis and subsequent musculoskeletal force prediction.

2. Materials and methods

To determine subject-specific loads acting on the tibia, a
computational-based approach was developed, which com-
bined different numerical tools widely used in bone image
analysis and bone mechanics. Thus, we first describe this
computational approach to determine the subject-specific
forces. Next, we present the method used to validate this
novel methodology. Finally, we present the final subject-
specific cases that were studied.

2.1. Computational-based methodology for estimating
subject-specific loads

To apply this methodology (see Fig. 1), we required the
subject-specific bone geometry and its bone apparent density,
which can be obtained from individual CT data (Hounsfield
Units – HU) (Section 2.3.2) through current standard image
analysis (Bitsakos et al., 2005). Therefore, from this analysis,
we were able to construct a subject-specific FE model that
replicated the main characteristics of the bone: its geometry
and heterogeneous material properties (Fig. 1 – left). This FE
model was used for intensive bone remodelling simulations
(Doblaré and García, 2001) (see Appendix A) with multiple
different load cases that come from inter- and intra-subject
variability (Motion data – Fig. 1 – right). The knee joint force
was assumed to define the bone density distribution (Fx, Fy
and Fz). From the multiple bone remodelling simulations, we
obtained different apparent density patterns for each load
condition. Then, we selected the apparent density and
volume at different regions of interest (ROIs) (Appendix B)
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