
SELF-TUNING CONTROL BASED ON

GENERALIZED MINIMUM VARIANCE

CRITERION.

Anna Patete ∗,1 Katsuhisa Furuta ∗∗,1

Masayoshi Tomizuka ∗∗∗

∗Department of Advanced Multidisciplinary Engineering.
E-mail: apatete@furutalab.k.dendai.ac.jp

∗∗Department of Computer and Systems Engineering.
E-mail: furuta@k.dendai.ac.jp

Tokyo Denki University, Hatoyama-cho, Hiki-gun,
Saitama, 350-0394, Japan. Fax: +81-49-296-3286.

∗∗∗Department of Mechanical Engineering.
University of California, Berkeley, CA 94720, USA.

Fax:+1-510-643-5599. E-mail: tomizuka@me.berkeley.edu

Abstract: The stability of adaptive control systems has been studied extensively
for minimum phase systems, mainly for model reference adaptive systems, but
complete stability proof for non-minimum phase systems have not been given. In
this paper, the stability of two types of self-tuning controllers for discrete time
minimum and non-minimum phase plants is studied, namely: recursive estimation
of the implicit self-tuning controller parameters based on generalized minimum
variance criterion (REGMVC), and another based on generalized minimum vari-
ance criterion - β equivalent control approach (REGMVC-β). Stability of the
algorithms are proved by the Lyapunov theory. Copyright c© 2007 IFAC
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1. INTRODUCTION

Åström and Wittenmark (Astrom and Witten-
mark, 1973) developed and studied the conver-
gence of the implicit self-tuning controller in a
stochastic setting. The stability of self-tuning al-
gorithms for Model Reference Adaptive Systems
(MRAS) have been studied for the strictly positive
real model by Landau (Landau, 1980)(Landau,
1982). Latter on, Johansson (Johansson, 1986)
studied the stability of MRAS for a minimum
phase system, using Lyapunov theory. Global con-
vergence for a class of adaptive control algorithms
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applied to discrete-time single-input single-output
(SISO) and multi-input multi-output (MIMO) lin-
ear systems were studied for the minimum vari-
ance criterion in a seminal paper by Goodwin,
et al. (Goodwin et al., 1980). However in these
approaches the considered system should be min-
imum phase and the extension to consider the
measurement noise may be difficult.

Extending the results of Åström (Astrom and
Wittenmark, 1973), Clarke and Gawthrop (Clarke
et al., 1975) proposed the Generalized Minimum
Variance Control (GMVC) for non-minimum phase
systems, using a cost function which incorpo-
rates system input and set-point variation. For



the case of the unknown system parameters, the
unknown parameters are estimated using a re-
cursive least-squares algorithm. Latter, in (Clarke
et al., 1979) the convergence of the closed-loop
system is analyzed using the positive real condi-
tion. In (Gawthrop, 1980) some stability analysis
are given based on the notion of dissipative sys-
tems and conicity properties. However a complete
global stability proof of self-tuning control for
non-minimum phase systems have not been yet
studied.

Sliding mode control (SMC) based on the variable
structure systems (VSS), in the continuous-time
case, is not robust when uncertainty excess the
bound assumed in the design. Slotine (Slotine
and Li, 1964) combined variable structure and
adaptive control to solve this problem. Furuta
(Furuta, 1993a) presents a discrete-time VSS type
method for the case where systems parameters are
unknown. The VSS is designed based on minimum
variance control (MVC) or generalized minimum
variance control (GMVC) using recursive param-
eter estimation. Extending (Furuta, 1993a), in
(Furuta, 1993b) a designed parameter is intro-
duced in the control law while maintaining the
use of VSS. The stability of self-tuning control
based on the certainty equivalence principle has
been studied in (Morse, 1992). This approach is
said implicit self-tuning control. However param-
eters are not identified accurately in the closed
loop, and the stability is not assured based on the
certainty equivalence principle.

In this paper, the stability of two types of implicit
self-tuning controllers for discrete time minimum
and non-minimum phase plants, when the system
parameters are unknown, is proved. One is the
combination of the generalized minimum variance
control and identification of control parameter
recursively (REGMVC), which has been used in
many self-tuning controllers. The stability of the
overall adaptive system is proved in this paper, al-
though the parameters are not assured to converge
to the true values. The other one (REGMVC-β)
considers delay in control input. Stability of the
algorithm is proved by the Lyapunov theory. It
is not necessary to use VSS nor any additional
condition to ensure closed loop system stability for
the algorithms studied in this paper. The stability
of the closed-loop system is proved in straight
forward way in comparison with Goodwin, et al.
(Goodwin et al., 1980), and may be extended to
the case including the measurement noise (Patete
et al., n.d.). This paper consider the non-minimum
phase systems contrary to (Goodwin et al., 1980)
paper.

The paper is organized as follows; in section 2,
the generalized minimum variance criterion is pre-
sented. Section 3 deals with parametric uncertain-

ties using self-tuning control based on generalized
minimum variance criterion. A simulate examples
is given in section 4. Concluding remarks are in 5.

2. GENERALIZED MINIMUM VARIANCE
CRITERION

This paper considers a single-input single-output
(SISO) time-invariant system. The representation
of the plant with input uk and output yk is

A(z−1)yk = z−dB(z−1)uk (1)

where A(z−1) and B(z−1) have no common factor
and z denotes the time shift operator z−tyk =
yk−t. In the Laplace transformation, z = esT0

where T0 is the sample period (for simplicity, and
without loss of generality, we may assume T0 = 1).

The polynomials A(z−1) and B(z−1) are assumed
to be known, and represented as:

A(z−1) = 1 + a1z
−1 + a2z

−2 + ...+ anz
−n

B(z−1) = b0 + b1z
−1 + b2z

−2 + ...+ bmz
−m

where b0 6= 0 and delay step d, is also assumed to
be known.

The objective of the control is to minimize the
variance of the controlled variables sk+d, that is
defined in the deterministic case as

sk+d = C(z−1)(yk+d ¡ rk+d) +Q(z−1)uk (2)

The polynomials

C(z−1) = 1 + c1z
−1 + c2z

−2 + ...+ cnz
−n

Q(z−1) = q0(1¡ z−1)

are to be designed, rk is the reference signal, and
the error signal ek is defined as ek = yk ¡ rk.
The idea is similar to the discrete time sliding
mode control, see (Xinghuo and Jian-Xin, 1992)
and (Zinober, 1994). In the case of Goodwin, et al.
(Goodwin et al., 1980), Q(z−1) is not considered
and C(z−1) is chosen as C(z−1) = 1.

The polynomial C(z−1) is Schur, hence the error
signal will vanish if (2) is kept to zero. The polyno-
mial C(z−1) may be determined by assigning all
characteristic roots inside the unit disk of z-plane.

Equation (2) is rewritten as:

sk+d = G(z−1)uk + F (z−1)yk ¡ C(z−1)rk+d (3)

where the polynomialG(z−1) is defined asG(z−1) =
E(z−1)B(z−1)+Q(z−1), and polynomials E(z−1)
and F (z−1) satisfy the equality,

C(z−1)
.
= A(z−1)E(z−1) + z−dF (z−1) (4)
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