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Abstract: A multiestimation adaptive control scheme for linear time-invariant (LTI) continuous-time plant with unknown 

parameters is presented. The set of discrete adaptive models is calculated from a different combination of the correcting gain 

β in a fractional order hold (FROH) and the set of gains to reconstruct the plant input under multirate sampling with fast input 

sampling. The reference output is given by a continuous transfer function to evaluate the continuous tracking error of all the 

possible discrete models. Then the scheme selects online the model with the best continuous tracking performance. The 

estimated discrete unstable zeros are avoided through an appropriate design of the multirate gains so that the reference model 

might be freely chosen with no zeros constrains. A least-squares algorithm is used to estimate the plant parameters. However, 

only the active model is updated by using a least squares algorithm.  The remaining possible models are updated by first 

calculating an estimated continuous-time transfer function, which results to be identical for all the models while their 

discretized versions are distinct in general. 
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1. INTRODUCTION  
It is well-known that the unstable either continuous or discrete 

plant zeros should be transmitted to the reference model in a 

model matching problem (Aström and Wittenmark, 1990). In the 

context of discrete-time controllers acting on continuous-time 

plants, an appropriate choice of the correcting gain β of a FROH 

(potentially including zero-order holds, ZOH, for 0β =  and first-

order holds, FOH, for 1β = ) as well as the sampling period can 

locate some of the discretization zeros in the stable zone (Bilbao-

Guillerna et al., 2005; Ishitobi, 1996; Liang and Ishitobi, 2005). 

However, this is not always possible because of the presence of 

unstable continuous-time zeros or because of the required range of 

the sampling period which can instabilize either the discretization 

or the intrinsic zeros. A solution of general applicability to avoid 

or circumvent this drawback is the use of multirate sampling 

techniques. A good selection of the multirate gains may make the 

estimated discrete zeros stable, (Alonso-Quesada and de la Sen, 

2006; De la Sen and Bárcena, 2007; Moore et al., 1993; Morris 

and Neuman, 1981). However, the use of these techniques 

introduces a disadvantage that should be taken into account. 

Although the tracking of the desired reference can be achieved at 

sampling instants by the control law, the behavior of the output 

during the inter-sample period may not be suitable enough. This 

behavior depends on the choice of β, the sampling period and the 

reconstruction method used to generate the continuous plant input 

from the computed control sequence at sampling instants. 

 

The main objective of this paper is to improve the inter-sample 

behavior by an appropriate selection of the gain β and the 
multirate gains through a fully freely chosen reference model even 

when the continuous plant possesses unstable zeros. In order to 

achieve this objective, we introduce a parallel multiestimation 

scheme, (Bilbao-Guillerna et al., 2005; Narendra and 

Balakrishnan, 1994 and 1997). The various models of this scheme 

are obtained via different values of the gain β in the FROH and 

different multirate gains. Since the plant parameters are unknown 

they have to be estimated and the models composing the 

multiestimation scheme are time-varying. The main novelty of this 

paper compared with previous background work (Alonso-

Quesada and de la Sen 2006, De la Sen and Alonso Quesada, 

2007) is that the reference output is supplied by a stable 

continuous transfer function. Then the scheme is able to partly 

regulate the continuous-time tracking error while the controller is 

essentially discrete-time and operated by a FROH in general. 

However, since the controller is designed to be discrete, it is 

necessary to obtain a discrete transfer function from the 

continuous-time reference one. In this way, each discretized plant 

model possesses a different discrete model which is obtained via 

discretization of the continuous reference model under a FROH 

with its associated gain β. As a result, each estimated model tends 
asymptotically to a different reference one. In (Alonso-Quesada 

and de la Sen, 2006), all of them converged asymptotically to the 

same reference model. The closed-loop performance is evaluated 

for all the possible discretized plant models by calculating their 

corresponding plant control signal and testing and monitoring its 

effect on an estimated continuous plant. Then, a performance 

index evaluates the continuous tracking performance of the 

estimated outputs related to the reference ones and the switching 

scheme selects the one with the lowest value. The active model 

currently in operation is used to online parameterize a discrete 

controller for matching the corresponding discrete reference 

model. A minimum residence time between consecutive switches 

is required for closed-loop stability purposes, (Aström and 

Wittenmark, 1990; Narendra and Balakrishnan, 1994 and 1997).  

Finally, some simulations will be displayed to show the effect of 

the proposed scheme.  

 

2. DICRETE TRANSFER FUNCTION  
Since the controller is discrete-time and the plant is continuous-

time, we need to generate a continuous-time signal from the 

discrete control input, before injecting it to the plant. Two 

different reconstruction methods are considered in order to 

generate such an input. One method is governed by the large 

sampling period while the other one is governed by the small 

sampling period. The continuous-time plant is defined by the 

following state-space equations: 

( ) ( ) ( ); ( ) ( )Tx t Ax t bu t y t c x t= + =�                 (1) 

where u(t) and y(t) are, respectively, the input and output 

signals, ( ) nx t ∈ℜ  denotes the state vector and A, b and cT are 

constant matrix and vectors of appropriate dimensions. 



 

     

2.1 Input Reconstruction Method I (Ruled by the large 

sampling period T) 
 

The plant input is generated by the following equation: 
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                (2) 

for )' '
( 1) ,t kT j T kT jT∈ + − +  and { }1,2,...,j N N∈ ≡ , where 

k
u  is the input signal at t kT= and [ ]1,1β ∈ −  is the FROH 

correcting gain. T is the large sampling period associated with 

slow sampling rate of the output and ' TT
N

=  is the small 

sampling period associated with the fast sampling rate of the 

input. In other words, the large sampling period is divided in N 

equal subperiods in order to generate the multirate input. It is 

possible to ensure the stability of the zeros of all the discretized 

plant models which relate the input and output sequences defined 

over the sampling period T by an appropriate choice of the 

multirate gains jα  since the discretized plant zeros are 

parameterized by such gains. The discrete transfer function is 

                        ( ) ( ) ( )H z B z A zβ β β=                               (3) 

The denominator of the transfer function does not depend on the 

choice of the gains 
j

α  and it can be calculated as:  
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The numerator can be written as: 
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with Adj(.) and Det(.) denoting, respectively, the adjoint matrix 

and the determinant of the square matrix (.) and 
n
I  denoting the 

n-th order identity matrix. g is the vector of multirate gains with 
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The denominator can be rewritten as: 
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The coefficients ,jb �  depend on the parameters of the continuous 

time plant, the large sampling period T and the correcting gain β  

of the FROH considered in the discretization process. The value 

of the vector of multirate gains is relevant to stabilize the discrete 

plant zeros by appropriate choice of its components. Note that if 

we choose 1jα =  for all j N∈ , then this reconstruction method 

becomes the common one obtained with a FROH without 

multirate sampling working at the large single sampling period T. 

2.2 Input Reconstruction Method II (Ruled by the small 

sampling period T’) 

In this method, the plant input is governed with the fast sampling 

and generated by the following equation: 
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for )' '( 1) ,t kT j T kT jT∈ + − +  and j N∈ , where 
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The denominator of the transfer function is identical to that 

obtained in (4), while the numerator is 
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where,           0 0,1 0,2 0,( ) ( ), ( ),..., ( )T
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Now the multirate is ruled by the fast sampling rate because it is 

necessary to know the value of the input at the fast sampling 

instants to generate the continuous-time plant input. Note that if 

0β =  both methods lead to the same transfer function.  

2.3 Compact Representation  

The discretized plant model can be described in a compact and 

clear way as 
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where ,1 ,2 , 1 0 ,1 ,2 ,... ; ...
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The above notation will be then useful in order to formulate 

properly the estimation scheme with the given expanded 

regressor. The coefficients of the numerator of the discrete 

transfer function can be rewritten as 
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