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a b s t r a c t

The Straight Fibrils are stiff rod-like filaments and play a significant role in cellular

processes as structural stability and intracellular transport. Introducing a 3D mechanical

model for the motion of braced cylindrical fibrils under axial motion constraint; we provide

some mechanism and a graph theoretical model for fibril structures and give the

characterization of the flexibility and the rigidity of this bar-and-joint spatial framework.

The connectedness and the circuit of the bracing graph characterize the flexibility of these

structures. In this paper, we focus on the kinematical properties of hierarchical levels of

fibrils and evaluate the number of the bracing elements for the rigidity and its computa-

tional complexity. The presented model is a good characterization of the frameworks of

bio-fibrils such as microtubules, cellulose, which inspired this work.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The fibril network literature declares that the cross-linked fibril
structure is complicated and consist of redundant connections
(Blundell and Terentjev; Ha and Thirumalai, 1997; Ingber, 1998;
Liljenström, 2003; Väkiparta et al., 2004). These redundancies are
necessary the loading, the signal transporting, and the stability
point of view. However, technical systems or the structures of
the natural or social sciences have to be rigid and/or flexible
some case at the same time (Csermely, 2006; Fletcher and
Mullins, 2010; Fratzl, 2008; Gáspár and Csermely; Head et al.,
2003; Jacobs et al., 2001). This paper characterizes the rigidity and
mobility of rod-like fibrils in biological systems. The rod-like fibril
structure with redundant bracing elements is safe if some of the
bracing elements would collapse than the remainders make the

structure rigid yet. Celluloses (Cosgrove, 2014; Gibson et al., 2010;
Gibson, 2013; Liu et al., 2013; Park and Cosgrove, 2012; Saitoh
et al., 2013; Svensson et al., 2010; Tanaka et al., 2012), Fibrin
(Ferry, 1952), Collagens, Minerals, Microtubules, (Ahmadzadeh

et al., 2015; Cheng. and Pinsky, 2013; Gardel et al., 2004; Genin et
al., 2009; Gutjahr et al., 2006; Karsai et al., 2006; Kasza et al., 2010;
Licup et al., 2015; Motte and Kaufman, 2013; Pelletier et al., 2003;
Thorpe, 1983; Wang, 2006; Wood and Keech, 1960; Zhang et al.,
2014; Zimmermann and Ritchie, 2015), Chitins (Ilnicka and
Lukaszewicz, 2015; Prashanth and Tharanathan, 2007; Sachs
et al., 2006; Sachs et al., 2008) self-assemble into thick, hierarchi-
cally ordered, stiff fibres through electrostatic and hydrophobic
interactions,. The network stiffness becomes surprisingly insen-

sitive to network concentration, demonstrate how a simple
model for networks of elastic fibres can quantitatively account
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for the mechanics of reconstituted collagen networks. We
provide a discrete model that characterizes the flexibility and
rigidity of braced framework of the fibrils. The model gives a
good characterization in the case when the Young modulus is
high enough, the order of magnitude not less than 1 GPa for the
fibres and the crosslinks also. The paper gives a model for
further improvements. This model provides an input to other
tests that take account of the exact mechanical properties of the
fibrils, the cross-links, and the matrix. The mineral crystals in
nano bone structure have a large aspect ratio. Hence, the
direction of its displacement is the same as the macro fibrils
that contain them and the micro fibril that connect them.
Besides bone, other biological materials like shell, dentin, spider
silk, wood, and chitin or the microstructural model of the axonal
cytoskeleton (Ahmadzadeh et al., 2015) show similar structure
despite their complex hierarchical structures. They are arranged
in grid position in cross-section view, cross-linked by braces with
multiplicity, which consist of similar material. The lower bound
of the distance between any two cylinders in the packing is the
thickness of the cylinder. In the case of dense packing of the
cylinders (in Bundle or Layer structure), they can move only in
its axial direction; the adjacent cylinders obstruct the lateral
motions. Notwithstanding, if the axial motion constraints are
not satisfied in a cross-linked fibril structure than our model
gives a necessary condition for the rigidity of the bar–joint
structure. If the SFF of the a cross-linked fibril structure is not
rigid then its bar–joint structure is not rigid. Hence, further cross-
links have to be applying for the rigidity that is count by the
Maxwell's rank condition for the further method that should
take account of the exact mechanical properties of the fibrils, the
cross-links, and the matrix.

1.1. Bar-and-joint framework

The bar–joint framework: One of the simplest structures in
statics is the bar-and-joint framework, that consists of
optimal bars connected by rotatable joints, i.e. the bar lengths
and the bar and joint incidences must be preserved.

1.1.1. The rigidity of bar-and-joint framework
Firstly, we give a definition of the rigidity of the bar-and-joint
framework.

Definition 1. A framework is rigid if any continuous motion
of the joints that keeps the length of every bar fixed, also
keeps the distance fixed between every pair of joints.

It is a preservation of distances the joints during any
continuous motion of the joints.

1.1.2. The infinitesimal rigidity of bar–joint framework
The infinitesimal motion is a special case of virtual motion;
that refers to a virtual change in the position such that the
constraints remain satisfied (possible motions).

The rigid body motions refer to the trivial infinitesimal
motion. The Definition 1 allows frameworks that have infini-
tesimal motions. In the statics for the rigid structure, the
non-trivial infinitesimal motions of the joints have not
permitted (Libonati et al., 2013; Nagy, 2001; Owen and

Power, 2010; Power, 2014; Radics and Recski, 2002; Recski,

1989; Szymanski, 2014; Thomas et al., 2013).

Definition 2. A framework is infinitesimally rigid if it only has

trivial infinitesimal motions.

We can see the central joints of the framework on Fig. 1. It

has an infinitesimal motion up and down, perpendicularly to

the plane of the structure. If a framework is infinitesimally

rigid, we require first-order preservation of distances during

the infinitesimal motions of all joints. We have to decide the

rank of rigidity matrix of the framework.
Let (xi, yi, zi) be the coordinates of the joint Pi of a bar–joint

structure, where (1r irn). A bar between the joints Pi and Pj
determines the distance from Pi to Pj, there for it is constant,

by differentiating its square, leads to the next equation:

ðxi�xjÞð _xi� _xjÞ þ ðyi�yjÞð _yi� _yjÞ þ ðzi�zjÞð _zi� _zjÞ ¼ 0: ð1Þ

where, the velocity coordinates ẋi, ẏi, żi are the varieties.

Hence, if we use bars between joints, and the number of bars

is e, then we get a system with e pieces of equations. The

matrix representation of the equation system is the next:

Au¼ 0: ð2Þ

where u is the column vector of velocity, and A is an e�3n

rigidity matrix. In statics, rigidity does not even allow infini-

tesimal motions. In this case, the Eq. (2) has the trivial

solution only (i.e. the rigid body like motions). The rigid body

motion of the joint keeps fixed the distance between the pairs

of the joint. If the joints of the framework have motions, that

different from the rigid body motion, then the framework is

not rigid. In this case the rank(A)o3n�6. The framework is

rigid if and only if the rank(A)¼3n�6, see: (Jordán et al., 2013;

Maxwell, 1864; Nagy, 1994; Owen and Power, 2010; Power,

2014; Recski, 1989; Thomas et al., 2013; Watanabe and

Nakamura, 1993). Maxwell (1864) gave this characterization

but with his result, the time complexity of deciding the

rigidity is O(e3).

Fig. 1 – Infinitesimal motion: There are non-trivial
infinitesimal motions of the central joints of the framework.
The central points of its joints are in the same plane. The
central joint can move infinitesimally into the normal
direction of framework plane, at the beginning of this
motion, no constraint restrict these motions. The length of
the shorter bars change in second-order, the preservation of
all distances is first order.
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