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a b s t r a c t

Particle suspensions are common to biological fluid flows; for example, flow of red- and

white-blood cells, and platelets. In medical technology, current and proposed methods for

drug delivery use membrane-bounded liquid capsules for transport via the microcircula-

tion. In this paper, we consider a 3D linear elastic particle inserted into a Newtonian fluid

and investigate the time-dependent deformation using a numerical simulation. Specifi-

cally, a boundary element technique is used to investigate the motion and deformation of

initially spherical or spheroidal particles in bounded linear shear flow. The resulting

deformed shapes reveal a steady-state profile that exhibits a ‘tank-treading’ motion for

initially spherical particles. Wall effects on particle trajectory are seen to include a

modified Jeffrey's orbit for spheroidal inclusions with a period that varies inversely with

the strength of the shear flow. Alternately, spheroidal inclusions may exhibit either a

‘tumbling’ or ‘trembling’ motion depending on the initial particle aspect ratio and the

capillary number (i.e., ratio of fluid shear to elastic restoring force). We find for a capillary

number of 0.1, a tumbling mode transitions to a trembling mode at an aspect ratio of 0.87

(approx.), while for a capillary number of 0.2, this transition takes place at a lower aspect

ratio. These oscillatory modes are consistent with experimental observations involving

similarly shaped vesicles and thus serves to validate the use of a simple elastic constitutive

model to perform relevant physiological flow calculations.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Suspensions of deformable particles (e.g., blood cells, plate-

lets, liposomes) are common to biological fluid flows. While

the inclusions, rigid or otherwise, affect fluid rheology,

particle deformation may play a role in important physiolo-

gical function. For example, the rolling deformation of

leukocytes as occurs during cellular inflammatory response

may enhance their adhesive interactions with inflamed

tissue (Park et al., 2002; Subramaniam, 2012). Similarly,

deformation of erythrocytes may trigger cellular release of

ATP (Wan et al., 2011). Also, the membrane stability of

polymer micro-gels that serve as drug delivery capsules could

be influenced by their deformability (Oh et al., 2008)(D:/
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JournalITrack/Login/ELSE/JMBBM/1944/S100/Version1-
30May2016205403/) – Oh et al., 2008. In short, particle defor-
mation can affect physiological function.

Following the pioneering work of (Fröhlich and Sack, 1946),
a number of computational methods have been developed to
simulate the deformation and shape oscillations of biological
cells and capsules modeled as liquid drops. Eggleton and
Popel (1998) used the immersed boundary method (IBM) to
simulate large deformations of red-blood cells in shear flow.
Several variants including penalty IBM (Huang et al., 2012),
implicit (Le et al., 2009), Lattice Boltzmann method (LBM) –

IBM (Sui et al., 2008, 2010a), and front-tracking methods (Li
and Sarkar, 2008) have been developed to study the shape
oscillations of liquid-filled elastic capsules in unbounded
shear flow and hyperelastic solids in cavity flow (Zhao
et al., 2008). Some of these methods have been extended to
include wall effects in bounded shear flow or Couette flow
(Song et al., 2011), and all require the discretization of the
Navier–Stokes or Lattice-Boltzmann equations over a fixed
Cartesian grid. More recently, the Arbitrary Lagrangian Euler-
ian (ALE) finite-element (FEM) (Gao et al., 2011) and Eulerian
finite-difference method (Sugiyama et al., 2011) were devel-
oped to study shape oscillations of a deformable particle
modeled as a neo-Hookean solid in unbounded shear flow.
Villone et al. (2015) used a 3D ALE finite element formulation
to study the dynamic behavior of an incompressible neo-
Hookean elastic prolate spheroid suspended in bounded or
unbounded shear flow of a Newtonian fluid. Also, the bound-
ary element method (BEM) has been used to compute the
finite deformation of liquid drops (Kennedy et al., 1994), liquid
capsules (Lac et al., 2004; Pozrikidis, 1995), and red-blood cells
(Pozrikidis, 2003).

In the special case of uniaxial extension of a neo-Hookean
solid subject to finite strain, the principal stress s and
principal stretch λ are related through a non-linear relation,

s¼ η λ� 1
λ2

� �
ð1Þ

where η is the shear modulus and λ¼1þε (ε is the infinitesi-
mal strain). For ε{1, Eq. (1) reduces to

s¼ 3ηε ð2Þ

which implies that the equivalent elastic modulus for an
incompressible neo-Hookean solid is equivalent to 3η; iden-
tical to linear elasticity. Thus, elastomers – under conditions
of infinitesimal strain – can be approximated using a linear
elastic constitutive model.

The present study uses a BEM which is well-suited for the
problem based on its ability to treat flow suspensions in
bounded domains without the need for container discretiza-
tion. The suspended particle (initially spherical or spheroidal)
is modeled as a compressible, isotropic, homogeneous linear
elastic solid. Specifically, the mobility and shape dynamics
problems for deformable particles in bounded linear shear
flow (Fig. 1) are computed using a mixed (both indirect and
direct) boundary element method (Phan-Thien and Fan, 1995;
Phan-Thien et al., 1992; Power and Miranda, 1987). The
formulation uses the method of reflections to enforce no-
slip, no-displacement boundary conditions at the wall (Blake
and Chwang, 1974; Blake, 1971) and, further, assumes that the

mobility, exterior, and interior problems may be de-coupled
and solved sequentially. Specifically, during solution of the
exterior problem for traction, the particle is considered rigid.
The solution technique follows largely from, and is described
in Phan-Thien and Fan (1996). Discoid-shaped cells such as
erythrocytes may be modeled as oblate spheroids, while
unstressed leukocytes are modeled as spheres. Leukocytes
have previously been modeled as elastic solids (Gee and King,
2010), and the resulting deformed shapes were shown to be
consistent with cell deformations that occur during the stop-
and-go motion of leukocytes during selectin-mediated rolling
(Evans et al., 2005). The current study considers the limiting
case of vanishing Reynolds number (Re{1) which is repre-
sentative of flow in the microcirculation. Additionally, the
initial particle orientation is such that two of the three
mutually orthogonal major and/or minor axes are contained
on the shear plane. Initial orientations of the particle off of
this plane have not been considered here.

2. Theory

For vanishing Reynolds number, the Navier–Stokes equations
simplify to a linear set known as Stokes equations,

�∇pþ μ∇2v¼ 0; ∇Uv¼ 0 ð3Þ

where v, p are velocity and pressure, respectively. These
fundamental equations of fluid mechanics express the bal-
ance of pressure and viscous forces, and mass conservation,
respectively. Note, since the only body force considered here
is due to gravity, it can be expressed as the gradient of a
potential and combined with the pressure term. No-slip
boundary conditions are enforced at the planar interface at
all times. Immersed cells are subject to fluid shear and,
possibly, contact stresses (Subramaniam et al., 2013). During
cellular inflammatory response, rolling leukocytes are also
subject to adhesive stresses as a result of transient receptor-
ligand binding (King and Hammer, 2001). Small, infinitesimal
strains associated with cell rolling may be described with the
strain-displacement relation εij ¼ ðui;j þ uj;iÞ=2 where u is dis-
placement and ui;j denotes the partial derivative. Substituting
this into Hooke's law relation for elastic isotropic response
Tij ¼ λpεkkδij þ 2ηεij, where η; λp are Lamé elastic constants,
εkk denotes trace, and δij is the Kronecker delta, yields the

Fig. 1 – Elastically deformable particles in wall-bounded
shear flow.

j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 6 2 ( 2 0 1 6 ) 5 3 4 – 5 4 4 535



Download English Version:

https://daneshyari.com/en/article/7207846

Download Persian Version:

https://daneshyari.com/article/7207846

Daneshyari.com

https://daneshyari.com/en/article/7207846
https://daneshyari.com/article/7207846
https://daneshyari.com

