Author's Accepted Manuscript

A NON LINEAR-ELASTIC CONSTITUTIVE MODEL FOR SOFT CONNECTIVE TISSUE BASED ON A HISTOLOGIC DESCRIPTION:APPLICATION TO FEMALE PELVIC SOFT TISSUE

Mathias Brieu, Pierre Chantereau, Jean Gillibert, Laurent de Landsheere, Pauline Lecomte, Michel Cosson

www.elsevier.com

PII: S1751-6161(15)00360-4

DOI: http://dx.doi.org/10.1016/j.jmbbm.2015.09.023

Reference: JMBBM1628

To appear in: Journal of the Mechanical Behavior of Biomedical Materials

Received date: 29 May 2015

Revised date: 14 September 2015 Accepted date: 18 September 2015

Cite this article as: Mathias Brieu, Pierre Chantereau, Jean Gillibert, Laurent d Landsheere, Pauline Lecomte and Michel Cosson, A NON LINEAR-ELASTIC CONSTITUTIVE MODEL FOR SOFT CONNECTIVE TISSUE BASED ON A HISTOLOGIC DESCRIPTION:APPLICATION TO FEMALE PELVIC SOFT TISSUE, *Journal of the Mechanical Behavior of Biomedical Materials* http://dx.doi.org/10.1016/j.jmbbm.2015.09.023

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

A NON LINEAR-ELASTIC CONSTITUTIVE MODEL FOR SOFT CONNECTIVE TISSUE BASED ON A HISTOLOGIC DESCRIPTION: APPLICATION TO FEMALE PELVIC SOFT TISSUE

MATHIAS BRIEU^{1, 2}*, PIERRE CHANTEREAU², JEAN GILLIBERT³, LAURENT DE LANDSHEERE⁵, PAULINE LECOMTE^{1, 2} and MICHEL COSSON^{2, 4}

1 : Ecole Centrale de Lille bd Paul Langevin, 59650 Villeneuve d'Ascq, France

2: LML, UMR 8107, CNRS, bd Paul Langevin, 59650, Villeneuve d'Ascq, France

3 : Univ. Orléans, INSA-CVL, PRISME F45072, Orléans, France

4: Department of Gynecology, Jeanne de Flandre Hospital-CHRU de Lille Institut National de la Sante et de la Recherche Medicale U703 University Nord de France, Lille, France

5: Department of Obstetrics and Gynecology CHR La Citadelle, Liège, Belgium

*mathias.brieu@centrale-lille.fr

Received Accepted

To understand the mechanical behavior of soft tissues, two fields of science are essential: biomechanics and histology. Nonetheless, those two fields have not yet been studied together often enough to be unified by a comprehensive model. This study attempts to produce such model.

Biomechanical uniaxial tension tests were performed on vaginal tissues from 7 patients undergoing surgery. In parallel, vaginal tissue from the same patients was histologically assessed to determine the elastic fiber ratio.

These observations demonstrated a relationship between the stiffness of tissue and its elastin content. To extend this study, a mechanical model, based on an histologic description, was developed to quantitatively correlate the mechanical behavior of vaginal tissue to its elastic fiber content. A satisfactory single-parameter model was developed assuming that the mechanical behavior of collagen and elastin was the same for all patients and that tissues are only composed of collagen and elastin. This single-parameter model showed good correlation with experimental results.

The single-parameter mechanical model described here, based on histological description, could be very useful in helping to understand and better describe soft tissues with a view to their characterization. The mechanical behavior of a tissue can thus be determined thanks to its elastin content without introducing too many unidentified parameters.

1

Download English Version:

https://daneshyari.com/en/article/7208147

Download Persian Version:

https://daneshyari.com/article/7208147

Daneshyari.com